FFmpeg  4.4
vf_dctdnoiz.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013-2014 Clément Bœsch
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * A simple, relatively efficient and slow DCT image denoiser.
23  *
24  * @see http://www.ipol.im/pub/art/2011/ys-dct/
25  *
26  * The DCT factorization used is based on "Fast and numerically stable
27  * algorithms for discrete cosine transforms" from Gerlind Plonkaa & Manfred
28  * Tasche (DOI: 10.1016/j.laa.2004.07.015).
29  */
30 
31 #include "libavutil/avassert.h"
32 #include "libavutil/eval.h"
33 #include "libavutil/mem_internal.h"
34 #include "libavutil/opt.h"
35 #include "internal.h"
36 
37 static const char *const var_names[] = { "c", NULL };
38 enum { VAR_C, VAR_VARS_NB };
39 
40 #define MAX_THREADS 8
41 
42 typedef struct DCTdnoizContext {
43  const AVClass *class;
44 
45  /* coefficient factor expression */
46  char *expr_str;
49 
51  int pr_width, pr_height; // width and height to process
52  float sigma; // used when no expression are st
53  float th; // threshold (3*sigma)
54  float *cbuf[2][3]; // two planar rgb color buffers
55  float *slices[MAX_THREADS]; // slices buffers (1 slice buffer per thread)
56  float *weights; // dct coeff are cumulated with overlapping; these values are used for averaging
57  int p_linesize; // line sizes for color and weights
58  int overlap; // number of block overlapping pixels
59  int step; // block step increment (blocksize - overlap)
60  int n; // 1<<n is the block size
61  int bsize; // block size, 1<<n
63  const float *src, int src_linesize,
64  float *dst, int dst_linesize,
65  int thread_id);
66  void (*color_decorrelation)(float **dst, int dst_linesize,
67  const uint8_t **src, int src_linesize,
68  int w, int h);
69  void (*color_correlation)(uint8_t **dst, int dst_linesize,
70  float **src, int src_linesize,
71  int w, int h);
73 
74 #define MIN_NBITS 3 /* blocksize = 1<<3 = 8 */
75 #define MAX_NBITS 4 /* blocksize = 1<<4 = 16 */
76 #define DEFAULT_NBITS 3
77 
78 #define OFFSET(x) offsetof(DCTdnoizContext, x)
79 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
80 static const AVOption dctdnoiz_options[] = {
81  { "sigma", "set noise sigma constant", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 999, .flags = FLAGS },
82  { "s", "set noise sigma constant", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 999, .flags = FLAGS },
83  { "overlap", "set number of block overlapping pixels", OFFSET(overlap), AV_OPT_TYPE_INT, {.i64=-1}, -1, (1<<MAX_NBITS)-1, .flags = FLAGS },
84  { "expr", "set coefficient factor expression", OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
85  { "e", "set coefficient factor expression", OFFSET(expr_str), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
86  { "n", "set the block size, expressed in bits", OFFSET(n), AV_OPT_TYPE_INT, {.i64=DEFAULT_NBITS}, MIN_NBITS, MAX_NBITS, .flags = FLAGS },
87  { NULL }
88 };
89 
91 
92 static void av_always_inline fdct8_1d(float *dst, const float *src,
93  int dst_stridea, int dst_strideb,
94  int src_stridea, int src_strideb)
95 {
96  int i;
97 
98  for (i = 0; i < 8; i++) {
99  const float x00 = src[0*src_stridea] + src[7*src_stridea];
100  const float x01 = src[1*src_stridea] + src[6*src_stridea];
101  const float x02 = src[2*src_stridea] + src[5*src_stridea];
102  const float x03 = src[3*src_stridea] + src[4*src_stridea];
103  const float x04 = src[0*src_stridea] - src[7*src_stridea];
104  const float x05 = src[1*src_stridea] - src[6*src_stridea];
105  const float x06 = src[2*src_stridea] - src[5*src_stridea];
106  const float x07 = src[3*src_stridea] - src[4*src_stridea];
107  const float x08 = x00 + x03;
108  const float x09 = x01 + x02;
109  const float x0a = x00 - x03;
110  const float x0b = x01 - x02;
111  const float x0c = 1.38703984532215f*x04 + 0.275899379282943f*x07;
112  const float x0d = 1.17587560241936f*x05 + 0.785694958387102f*x06;
113  const float x0e = -0.785694958387102f*x05 + 1.17587560241936f*x06;
114  const float x0f = 0.275899379282943f*x04 - 1.38703984532215f*x07;
115  const float x10 = 0.353553390593274f * (x0c - x0d);
116  const float x11 = 0.353553390593274f * (x0e - x0f);
117  dst[0*dst_stridea] = 0.353553390593274f * (x08 + x09);
118  dst[1*dst_stridea] = 0.353553390593274f * (x0c + x0d);
119  dst[2*dst_stridea] = 0.461939766255643f*x0a + 0.191341716182545f*x0b;
120  dst[3*dst_stridea] = 0.707106781186547f * (x10 - x11);
121  dst[4*dst_stridea] = 0.353553390593274f * (x08 - x09);
122  dst[5*dst_stridea] = 0.707106781186547f * (x10 + x11);
123  dst[6*dst_stridea] = 0.191341716182545f*x0a - 0.461939766255643f*x0b;
124  dst[7*dst_stridea] = 0.353553390593274f * (x0e + x0f);
125  dst += dst_strideb;
126  src += src_strideb;
127  }
128 }
129 
130 static void av_always_inline idct8_1d(float *dst, const float *src,
131  int dst_stridea, int dst_strideb,
132  int src_stridea, int src_strideb,
133  int add)
134 {
135  int i;
136 
137  for (i = 0; i < 8; i++) {
138  const float x00 = 1.4142135623731f *src[0*src_stridea];
139  const float x01 = 1.38703984532215f *src[1*src_stridea] + 0.275899379282943f*src[7*src_stridea];
140  const float x02 = 1.30656296487638f *src[2*src_stridea] + 0.541196100146197f*src[6*src_stridea];
141  const float x03 = 1.17587560241936f *src[3*src_stridea] + 0.785694958387102f*src[5*src_stridea];
142  const float x04 = 1.4142135623731f *src[4*src_stridea];
143  const float x05 = -0.785694958387102f*src[3*src_stridea] + 1.17587560241936f*src[5*src_stridea];
144  const float x06 = 0.541196100146197f*src[2*src_stridea] - 1.30656296487638f*src[6*src_stridea];
145  const float x07 = -0.275899379282943f*src[1*src_stridea] + 1.38703984532215f*src[7*src_stridea];
146  const float x09 = x00 + x04;
147  const float x0a = x01 + x03;
148  const float x0b = 1.4142135623731f*x02;
149  const float x0c = x00 - x04;
150  const float x0d = x01 - x03;
151  const float x0e = 0.353553390593274f * (x09 - x0b);
152  const float x0f = 0.353553390593274f * (x0c + x0d);
153  const float x10 = 0.353553390593274f * (x0c - x0d);
154  const float x11 = 1.4142135623731f*x06;
155  const float x12 = x05 + x07;
156  const float x13 = x05 - x07;
157  const float x14 = 0.353553390593274f * (x11 + x12);
158  const float x15 = 0.353553390593274f * (x11 - x12);
159  const float x16 = 0.5f*x13;
160  dst[0*dst_stridea] = (add ? dst[ 0*dst_stridea] : 0) + 0.25f * (x09 + x0b) + 0.353553390593274f*x0a;
161  dst[1*dst_stridea] = (add ? dst[ 1*dst_stridea] : 0) + 0.707106781186547f * (x0f + x15);
162  dst[2*dst_stridea] = (add ? dst[ 2*dst_stridea] : 0) + 0.707106781186547f * (x0f - x15);
163  dst[3*dst_stridea] = (add ? dst[ 3*dst_stridea] : 0) + 0.707106781186547f * (x0e + x16);
164  dst[4*dst_stridea] = (add ? dst[ 4*dst_stridea] : 0) + 0.707106781186547f * (x0e - x16);
165  dst[5*dst_stridea] = (add ? dst[ 5*dst_stridea] : 0) + 0.707106781186547f * (x10 - x14);
166  dst[6*dst_stridea] = (add ? dst[ 6*dst_stridea] : 0) + 0.707106781186547f * (x10 + x14);
167  dst[7*dst_stridea] = (add ? dst[ 7*dst_stridea] : 0) + 0.25f * (x09 + x0b) - 0.353553390593274f*x0a;
168  dst += dst_strideb;
169  src += src_strideb;
170  }
171 }
172 
173 
174 static void av_always_inline fdct16_1d(float *dst, const float *src,
175  int dst_stridea, int dst_strideb,
176  int src_stridea, int src_strideb)
177 {
178  int i;
179 
180  for (i = 0; i < 16; i++) {
181  const float x00 = src[ 0*src_stridea] + src[15*src_stridea];
182  const float x01 = src[ 1*src_stridea] + src[14*src_stridea];
183  const float x02 = src[ 2*src_stridea] + src[13*src_stridea];
184  const float x03 = src[ 3*src_stridea] + src[12*src_stridea];
185  const float x04 = src[ 4*src_stridea] + src[11*src_stridea];
186  const float x05 = src[ 5*src_stridea] + src[10*src_stridea];
187  const float x06 = src[ 6*src_stridea] + src[ 9*src_stridea];
188  const float x07 = src[ 7*src_stridea] + src[ 8*src_stridea];
189  const float x08 = src[ 0*src_stridea] - src[15*src_stridea];
190  const float x09 = src[ 1*src_stridea] - src[14*src_stridea];
191  const float x0a = src[ 2*src_stridea] - src[13*src_stridea];
192  const float x0b = src[ 3*src_stridea] - src[12*src_stridea];
193  const float x0c = src[ 4*src_stridea] - src[11*src_stridea];
194  const float x0d = src[ 5*src_stridea] - src[10*src_stridea];
195  const float x0e = src[ 6*src_stridea] - src[ 9*src_stridea];
196  const float x0f = src[ 7*src_stridea] - src[ 8*src_stridea];
197  const float x10 = x00 + x07;
198  const float x11 = x01 + x06;
199  const float x12 = x02 + x05;
200  const float x13 = x03 + x04;
201  const float x14 = x00 - x07;
202  const float x15 = x01 - x06;
203  const float x16 = x02 - x05;
204  const float x17 = x03 - x04;
205  const float x18 = x10 + x13;
206  const float x19 = x11 + x12;
207  const float x1a = x10 - x13;
208  const float x1b = x11 - x12;
209  const float x1c = 1.38703984532215f*x14 + 0.275899379282943f*x17;
210  const float x1d = 1.17587560241936f*x15 + 0.785694958387102f*x16;
211  const float x1e = -0.785694958387102f*x15 + 1.17587560241936f *x16;
212  const float x1f = 0.275899379282943f*x14 - 1.38703984532215f *x17;
213  const float x20 = 0.25f * (x1c - x1d);
214  const float x21 = 0.25f * (x1e - x1f);
215  const float x22 = 1.40740373752638f *x08 + 0.138617169199091f*x0f;
216  const float x23 = 1.35331800117435f *x09 + 0.410524527522357f*x0e;
217  const float x24 = 1.24722501298667f *x0a + 0.666655658477747f*x0d;
218  const float x25 = 1.09320186700176f *x0b + 0.897167586342636f*x0c;
219  const float x26 = -0.897167586342636f*x0b + 1.09320186700176f *x0c;
220  const float x27 = 0.666655658477747f*x0a - 1.24722501298667f *x0d;
221  const float x28 = -0.410524527522357f*x09 + 1.35331800117435f *x0e;
222  const float x29 = 0.138617169199091f*x08 - 1.40740373752638f *x0f;
223  const float x2a = x22 + x25;
224  const float x2b = x23 + x24;
225  const float x2c = x22 - x25;
226  const float x2d = x23 - x24;
227  const float x2e = 0.25f * (x2a - x2b);
228  const float x2f = 0.326640741219094f*x2c + 0.135299025036549f*x2d;
229  const float x30 = 0.135299025036549f*x2c - 0.326640741219094f*x2d;
230  const float x31 = x26 + x29;
231  const float x32 = x27 + x28;
232  const float x33 = x26 - x29;
233  const float x34 = x27 - x28;
234  const float x35 = 0.25f * (x31 - x32);
235  const float x36 = 0.326640741219094f*x33 + 0.135299025036549f*x34;
236  const float x37 = 0.135299025036549f*x33 - 0.326640741219094f*x34;
237  dst[ 0*dst_stridea] = 0.25f * (x18 + x19);
238  dst[ 1*dst_stridea] = 0.25f * (x2a + x2b);
239  dst[ 2*dst_stridea] = 0.25f * (x1c + x1d);
240  dst[ 3*dst_stridea] = 0.707106781186547f * (x2f - x37);
241  dst[ 4*dst_stridea] = 0.326640741219094f*x1a + 0.135299025036549f*x1b;
242  dst[ 5*dst_stridea] = 0.707106781186547f * (x2f + x37);
243  dst[ 6*dst_stridea] = 0.707106781186547f * (x20 - x21);
244  dst[ 7*dst_stridea] = 0.707106781186547f * (x2e + x35);
245  dst[ 8*dst_stridea] = 0.25f * (x18 - x19);
246  dst[ 9*dst_stridea] = 0.707106781186547f * (x2e - x35);
247  dst[10*dst_stridea] = 0.707106781186547f * (x20 + x21);
248  dst[11*dst_stridea] = 0.707106781186547f * (x30 - x36);
249  dst[12*dst_stridea] = 0.135299025036549f*x1a - 0.326640741219094f*x1b;
250  dst[13*dst_stridea] = 0.707106781186547f * (x30 + x36);
251  dst[14*dst_stridea] = 0.25f * (x1e + x1f);
252  dst[15*dst_stridea] = 0.25f * (x31 + x32);
253  dst += dst_strideb;
254  src += src_strideb;
255  }
256 }
257 
258 static void av_always_inline idct16_1d(float *dst, const float *src,
259  int dst_stridea, int dst_strideb,
260  int src_stridea, int src_strideb,
261  int add)
262 {
263  int i;
264 
265  for (i = 0; i < 16; i++) {
266  const float x00 = 1.4142135623731f *src[ 0*src_stridea];
267  const float x01 = 1.40740373752638f *src[ 1*src_stridea] + 0.138617169199091f*src[15*src_stridea];
268  const float x02 = 1.38703984532215f *src[ 2*src_stridea] + 0.275899379282943f*src[14*src_stridea];
269  const float x03 = 1.35331800117435f *src[ 3*src_stridea] + 0.410524527522357f*src[13*src_stridea];
270  const float x04 = 1.30656296487638f *src[ 4*src_stridea] + 0.541196100146197f*src[12*src_stridea];
271  const float x05 = 1.24722501298667f *src[ 5*src_stridea] + 0.666655658477747f*src[11*src_stridea];
272  const float x06 = 1.17587560241936f *src[ 6*src_stridea] + 0.785694958387102f*src[10*src_stridea];
273  const float x07 = 1.09320186700176f *src[ 7*src_stridea] + 0.897167586342636f*src[ 9*src_stridea];
274  const float x08 = 1.4142135623731f *src[ 8*src_stridea];
275  const float x09 = -0.897167586342636f*src[ 7*src_stridea] + 1.09320186700176f*src[ 9*src_stridea];
276  const float x0a = 0.785694958387102f*src[ 6*src_stridea] - 1.17587560241936f*src[10*src_stridea];
277  const float x0b = -0.666655658477747f*src[ 5*src_stridea] + 1.24722501298667f*src[11*src_stridea];
278  const float x0c = 0.541196100146197f*src[ 4*src_stridea] - 1.30656296487638f*src[12*src_stridea];
279  const float x0d = -0.410524527522357f*src[ 3*src_stridea] + 1.35331800117435f*src[13*src_stridea];
280  const float x0e = 0.275899379282943f*src[ 2*src_stridea] - 1.38703984532215f*src[14*src_stridea];
281  const float x0f = -0.138617169199091f*src[ 1*src_stridea] + 1.40740373752638f*src[15*src_stridea];
282  const float x12 = x00 + x08;
283  const float x13 = x01 + x07;
284  const float x14 = x02 + x06;
285  const float x15 = x03 + x05;
286  const float x16 = 1.4142135623731f*x04;
287  const float x17 = x00 - x08;
288  const float x18 = x01 - x07;
289  const float x19 = x02 - x06;
290  const float x1a = x03 - x05;
291  const float x1d = x12 + x16;
292  const float x1e = x13 + x15;
293  const float x1f = 1.4142135623731f*x14;
294  const float x20 = x12 - x16;
295  const float x21 = x13 - x15;
296  const float x22 = 0.25f * (x1d - x1f);
297  const float x23 = 0.25f * (x20 + x21);
298  const float x24 = 0.25f * (x20 - x21);
299  const float x25 = 1.4142135623731f*x17;
300  const float x26 = 1.30656296487638f*x18 + 0.541196100146197f*x1a;
301  const float x27 = 1.4142135623731f*x19;
302  const float x28 = -0.541196100146197f*x18 + 1.30656296487638f*x1a;
303  const float x29 = 0.176776695296637f * (x25 + x27) + 0.25f*x26;
304  const float x2a = 0.25f * (x25 - x27);
305  const float x2b = 0.176776695296637f * (x25 + x27) - 0.25f*x26;
306  const float x2c = 0.353553390593274f*x28;
307  const float x1b = 0.707106781186547f * (x2a - x2c);
308  const float x1c = 0.707106781186547f * (x2a + x2c);
309  const float x2d = 1.4142135623731f*x0c;
310  const float x2e = x0b + x0d;
311  const float x2f = x0a + x0e;
312  const float x30 = x09 + x0f;
313  const float x31 = x09 - x0f;
314  const float x32 = x0a - x0e;
315  const float x33 = x0b - x0d;
316  const float x37 = 1.4142135623731f*x2d;
317  const float x38 = 1.30656296487638f*x2e + 0.541196100146197f*x30;
318  const float x39 = 1.4142135623731f*x2f;
319  const float x3a = -0.541196100146197f*x2e + 1.30656296487638f*x30;
320  const float x3b = 0.176776695296637f * (x37 + x39) + 0.25f*x38;
321  const float x3c = 0.25f * (x37 - x39);
322  const float x3d = 0.176776695296637f * (x37 + x39) - 0.25f*x38;
323  const float x3e = 0.353553390593274f*x3a;
324  const float x34 = 0.707106781186547f * (x3c - x3e);
325  const float x35 = 0.707106781186547f * (x3c + x3e);
326  const float x3f = 1.4142135623731f*x32;
327  const float x40 = x31 + x33;
328  const float x41 = x31 - x33;
329  const float x42 = 0.25f * (x3f + x40);
330  const float x43 = 0.25f * (x3f - x40);
331  const float x44 = 0.353553390593274f*x41;
332  dst[ 0*dst_stridea] = (add ? dst[ 0*dst_stridea] : 0) + 0.176776695296637f * (x1d + x1f) + 0.25f*x1e;
333  dst[ 1*dst_stridea] = (add ? dst[ 1*dst_stridea] : 0) + 0.707106781186547f * (x29 + x3d);
334  dst[ 2*dst_stridea] = (add ? dst[ 2*dst_stridea] : 0) + 0.707106781186547f * (x29 - x3d);
335  dst[ 3*dst_stridea] = (add ? dst[ 3*dst_stridea] : 0) + 0.707106781186547f * (x23 - x43);
336  dst[ 4*dst_stridea] = (add ? dst[ 4*dst_stridea] : 0) + 0.707106781186547f * (x23 + x43);
337  dst[ 5*dst_stridea] = (add ? dst[ 5*dst_stridea] : 0) + 0.707106781186547f * (x1b - x35);
338  dst[ 6*dst_stridea] = (add ? dst[ 6*dst_stridea] : 0) + 0.707106781186547f * (x1b + x35);
339  dst[ 7*dst_stridea] = (add ? dst[ 7*dst_stridea] : 0) + 0.707106781186547f * (x22 + x44);
340  dst[ 8*dst_stridea] = (add ? dst[ 8*dst_stridea] : 0) + 0.707106781186547f * (x22 - x44);
341  dst[ 9*dst_stridea] = (add ? dst[ 9*dst_stridea] : 0) + 0.707106781186547f * (x1c + x34);
342  dst[10*dst_stridea] = (add ? dst[10*dst_stridea] : 0) + 0.707106781186547f * (x1c - x34);
343  dst[11*dst_stridea] = (add ? dst[11*dst_stridea] : 0) + 0.707106781186547f * (x24 + x42);
344  dst[12*dst_stridea] = (add ? dst[12*dst_stridea] : 0) + 0.707106781186547f * (x24 - x42);
345  dst[13*dst_stridea] = (add ? dst[13*dst_stridea] : 0) + 0.707106781186547f * (x2b - x3b);
346  dst[14*dst_stridea] = (add ? dst[14*dst_stridea] : 0) + 0.707106781186547f * (x2b + x3b);
347  dst[15*dst_stridea] = (add ? dst[15*dst_stridea] : 0) + 0.176776695296637f * (x1d + x1f) - 0.25f*x1e;
348  dst += dst_strideb;
349  src += src_strideb;
350  }
351 }
352 
353 #define DEF_FILTER_FREQ_FUNCS(bsize) \
354 static av_always_inline void filter_freq_##bsize(const float *src, int src_linesize, \
355  float *dst, int dst_linesize, \
356  AVExpr *expr, double *var_values, \
357  int sigma_th) \
358 { \
359  unsigned i; \
360  DECLARE_ALIGNED(32, float, tmp_block1)[bsize * bsize]; \
361  DECLARE_ALIGNED(32, float, tmp_block2)[bsize * bsize]; \
362  \
363  /* forward DCT */ \
364  fdct##bsize##_1d(tmp_block1, src, 1, bsize, 1, src_linesize); \
365  fdct##bsize##_1d(tmp_block2, tmp_block1, bsize, 1, bsize, 1); \
366  \
367  for (i = 0; i < bsize*bsize; i++) { \
368  float *b = &tmp_block2[i]; \
369  /* frequency filtering */ \
370  if (expr) { \
371  var_values[VAR_C] = fabsf(*b); \
372  *b *= av_expr_eval(expr, var_values, NULL); \
373  } else { \
374  if (fabsf(*b) < sigma_th) \
375  *b = 0; \
376  } \
377  } \
378  \
379  /* inverse DCT */ \
380  idct##bsize##_1d(tmp_block1, tmp_block2, 1, bsize, 1, bsize, 0); \
381  idct##bsize##_1d(dst, tmp_block1, dst_linesize, 1, bsize, 1, 1); \
382 } \
383  \
384 static void filter_freq_sigma_##bsize(DCTdnoizContext *s, \
385  const float *src, int src_linesize, \
386  float *dst, int dst_linesize, int thread_id) \
387 { \
388  filter_freq_##bsize(src, src_linesize, dst, dst_linesize, NULL, NULL, s->th); \
389 } \
390  \
391 static void filter_freq_expr_##bsize(DCTdnoizContext *s, \
392  const float *src, int src_linesize, \
393  float *dst, int dst_linesize, int thread_id) \
394 { \
395  filter_freq_##bsize(src, src_linesize, dst, dst_linesize, \
396  s->expr[thread_id], s->var_values[thread_id], 0); \
397 }
398 
401 
402 #define DCT3X3_0_0 0.5773502691896258f /* 1/sqrt(3) */
403 #define DCT3X3_0_1 0.5773502691896258f /* 1/sqrt(3) */
404 #define DCT3X3_0_2 0.5773502691896258f /* 1/sqrt(3) */
405 #define DCT3X3_1_0 0.7071067811865475f /* 1/sqrt(2) */
406 #define DCT3X3_1_2 -0.7071067811865475f /* -1/sqrt(2) */
407 #define DCT3X3_2_0 0.4082482904638631f /* 1/sqrt(6) */
408 #define DCT3X3_2_1 -0.8164965809277261f /* -2/sqrt(6) */
409 #define DCT3X3_2_2 0.4082482904638631f /* 1/sqrt(6) */
410 
411 static av_always_inline void color_decorrelation(float **dst, int dst_linesize,
412  const uint8_t **src, int src_linesize,
413  int w, int h,
414  int r, int g, int b)
415 {
416  int x, y;
417  float *dstp_r = dst[0];
418  float *dstp_g = dst[1];
419  float *dstp_b = dst[2];
420  const uint8_t *srcp = src[0];
421 
422  for (y = 0; y < h; y++) {
423  for (x = 0; x < w; x++) {
424  dstp_r[x] = srcp[r] * DCT3X3_0_0 + srcp[g] * DCT3X3_0_1 + srcp[b] * DCT3X3_0_2;
425  dstp_g[x] = srcp[r] * DCT3X3_1_0 + srcp[b] * DCT3X3_1_2;
426  dstp_b[x] = srcp[r] * DCT3X3_2_0 + srcp[g] * DCT3X3_2_1 + srcp[b] * DCT3X3_2_2;
427  srcp += 3;
428  }
429  srcp += src_linesize - w * 3;
430  dstp_r += dst_linesize;
431  dstp_g += dst_linesize;
432  dstp_b += dst_linesize;
433  }
434 }
435 
436 static av_always_inline void color_correlation(uint8_t **dst, int dst_linesize,
437  float **src, int src_linesize,
438  int w, int h,
439  int r, int g, int b)
440 {
441  int x, y;
442  const float *src_r = src[0];
443  const float *src_g = src[1];
444  const float *src_b = src[2];
445  uint8_t *dstp = dst[0];
446 
447  for (y = 0; y < h; y++) {
448  for (x = 0; x < w; x++) {
449  dstp[r] = av_clip_uint8(src_r[x] * DCT3X3_0_0 + src_g[x] * DCT3X3_1_0 + src_b[x] * DCT3X3_2_0);
450  dstp[g] = av_clip_uint8(src_r[x] * DCT3X3_0_1 + src_b[x] * DCT3X3_2_1);
451  dstp[b] = av_clip_uint8(src_r[x] * DCT3X3_0_2 + src_g[x] * DCT3X3_1_2 + src_b[x] * DCT3X3_2_2);
452  dstp += 3;
453  }
454  dstp += dst_linesize - w * 3;
455  src_r += src_linesize;
456  src_g += src_linesize;
457  src_b += src_linesize;
458  }
459 }
460 
461 #define DECLARE_COLOR_FUNCS(name, r, g, b) \
462 static void color_decorrelation_##name(float **dst, int dst_linesize, \
463  const uint8_t **src, int src_linesize, \
464  int w, int h) \
465 { \
466  color_decorrelation(dst, dst_linesize, src, src_linesize, w, h, r, g, b); \
467 } \
468  \
469 static void color_correlation_##name(uint8_t **dst, int dst_linesize, \
470  float **src, int src_linesize, \
471  int w, int h) \
472 { \
473  color_correlation(dst, dst_linesize, src, src_linesize, w, h, r, g, b); \
474 }
475 
476 DECLARE_COLOR_FUNCS(rgb, 0, 1, 2)
477 DECLARE_COLOR_FUNCS(bgr, 2, 1, 0)
478 
479 static av_always_inline void color_decorrelation_gbrp(float **dst, int dst_linesize,
480  const uint8_t **src, int src_linesize,
481  int w, int h)
482 {
483  int x, y;
484  float *dstp_r = dst[0];
485  float *dstp_g = dst[1];
486  float *dstp_b = dst[2];
487  const uint8_t *srcp_r = src[2];
488  const uint8_t *srcp_g = src[0];
489  const uint8_t *srcp_b = src[1];
490 
491  for (y = 0; y < h; y++) {
492  for (x = 0; x < w; x++) {
493  dstp_r[x] = srcp_r[x] * DCT3X3_0_0 + srcp_g[x] * DCT3X3_0_1 + srcp_b[x] * DCT3X3_0_2;
494  dstp_g[x] = srcp_r[x] * DCT3X3_1_0 + srcp_b[x] * DCT3X3_1_2;
495  dstp_b[x] = srcp_r[x] * DCT3X3_2_0 + srcp_g[x] * DCT3X3_2_1 + srcp_b[x] * DCT3X3_2_2;
496  }
497  srcp_r += src_linesize;
498  srcp_g += src_linesize;
499  srcp_b += src_linesize;
500  dstp_r += dst_linesize;
501  dstp_g += dst_linesize;
502  dstp_b += dst_linesize;
503  }
504 }
505 
506 static av_always_inline void color_correlation_gbrp(uint8_t **dst, int dst_linesize,
507  float **src, int src_linesize,
508  int w, int h)
509 {
510  int x, y;
511  const float *src_r = src[0];
512  const float *src_g = src[1];
513  const float *src_b = src[2];
514  uint8_t *dstp_r = dst[2];
515  uint8_t *dstp_g = dst[0];
516  uint8_t *dstp_b = dst[1];
517 
518  for (y = 0; y < h; y++) {
519  for (x = 0; x < w; x++) {
520  dstp_r[x] = av_clip_uint8(src_r[x] * DCT3X3_0_0 + src_g[x] * DCT3X3_1_0 + src_b[x] * DCT3X3_2_0);
521  dstp_g[x] = av_clip_uint8(src_r[x] * DCT3X3_0_1 + src_b[x] * DCT3X3_2_1);
522  dstp_b[x] = av_clip_uint8(src_r[x] * DCT3X3_0_2 + src_g[x] * DCT3X3_1_2 + src_b[x] * DCT3X3_2_2);
523  }
524  dstp_r += dst_linesize;
525  dstp_g += dst_linesize;
526  dstp_b += dst_linesize;
527  src_r += src_linesize;
528  src_g += src_linesize;
529  src_b += src_linesize;
530  }
531 }
532 
533 static int config_input(AVFilterLink *inlink)
534 {
535  AVFilterContext *ctx = inlink->dst;
536  DCTdnoizContext *s = ctx->priv;
537  int i, x, y, bx, by, linesize, *iweights, max_slice_h, slice_h;
538  const int bsize = 1 << s->n;
539 
540  switch (inlink->format) {
541  case AV_PIX_FMT_BGR24:
542  s->color_decorrelation = color_decorrelation_bgr;
543  s->color_correlation = color_correlation_bgr;
544  break;
545  case AV_PIX_FMT_RGB24:
546  s->color_decorrelation = color_decorrelation_rgb;
547  s->color_correlation = color_correlation_rgb;
548  break;
549  case AV_PIX_FMT_GBRP:
550  s->color_decorrelation = color_decorrelation_gbrp;
551  s->color_correlation = color_correlation_gbrp;
552  break;
553  default:
554  av_assert0(0);
555  }
556 
557  s->pr_width = inlink->w - (inlink->w - bsize) % s->step;
558  s->pr_height = inlink->h - (inlink->h - bsize) % s->step;
559  if (s->pr_width != inlink->w)
560  av_log(ctx, AV_LOG_WARNING, "The last %d horizontal pixels won't be denoised\n",
561  inlink->w - s->pr_width);
562  if (s->pr_height != inlink->h)
563  av_log(ctx, AV_LOG_WARNING, "The last %d vertical pixels won't be denoised\n",
564  inlink->h - s->pr_height);
565 
566  max_slice_h = s->pr_height / ((s->bsize - 1) * 2);
567  s->nb_threads = FFMIN3(MAX_THREADS, ff_filter_get_nb_threads(ctx), max_slice_h);
568  av_log(ctx, AV_LOG_DEBUG, "threads: [max=%d hmax=%d user=%d] => %d\n",
569  MAX_THREADS, max_slice_h, ff_filter_get_nb_threads(ctx), s->nb_threads);
570 
571  s->p_linesize = linesize = FFALIGN(s->pr_width, 32);
572  for (i = 0; i < 2; i++) {
573  s->cbuf[i][0] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][0]));
574  s->cbuf[i][1] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][1]));
575  s->cbuf[i][2] = av_malloc_array(linesize * s->pr_height, sizeof(*s->cbuf[i][2]));
576  if (!s->cbuf[i][0] || !s->cbuf[i][1] || !s->cbuf[i][2])
577  return AVERROR(ENOMEM);
578  }
579 
580  /* eval expressions are probably not thread safe when the eval internal
581  * state can be changed (typically through load & store operations) */
582  if (s->expr_str) {
583  for (i = 0; i < s->nb_threads; i++) {
584  int ret = av_expr_parse(&s->expr[i], s->expr_str, var_names,
585  NULL, NULL, NULL, NULL, 0, ctx);
586  if (ret < 0)
587  return ret;
588  }
589  }
590 
591  /* each slice will need to (pre & re)process the top and bottom block of
592  * the previous one in in addition to its processing area. This is because
593  * each pixel is averaged by all the surrounding blocks */
594  slice_h = (int)ceilf(s->pr_height / (float)s->nb_threads) + (s->bsize - 1) * 2;
595  for (i = 0; i < s->nb_threads; i++) {
596  s->slices[i] = av_malloc_array(linesize, slice_h * sizeof(*s->slices[i]));
597  if (!s->slices[i])
598  return AVERROR(ENOMEM);
599  }
600 
601  s->weights = av_malloc(s->pr_height * linesize * sizeof(*s->weights));
602  if (!s->weights)
603  return AVERROR(ENOMEM);
604  iweights = av_calloc(s->pr_height, linesize * sizeof(*iweights));
605  if (!iweights)
606  return AVERROR(ENOMEM);
607  for (y = 0; y < s->pr_height - bsize + 1; y += s->step)
608  for (x = 0; x < s->pr_width - bsize + 1; x += s->step)
609  for (by = 0; by < bsize; by++)
610  for (bx = 0; bx < bsize; bx++)
611  iweights[(y + by)*linesize + x + bx]++;
612  for (y = 0; y < s->pr_height; y++)
613  for (x = 0; x < s->pr_width; x++)
614  s->weights[y*linesize + x] = 1. / iweights[y*linesize + x];
615  av_free(iweights);
616 
617  return 0;
618 }
619 
621 {
622  DCTdnoizContext *s = ctx->priv;
623 
624  s->bsize = 1 << s->n;
625  if (s->overlap == -1)
626  s->overlap = s->bsize - 1;
627 
628  if (s->overlap > s->bsize - 1) {
629  av_log(s, AV_LOG_ERROR, "Overlap value can not except %d "
630  "with a block size of %dx%d\n",
631  s->bsize - 1, s->bsize, s->bsize);
632  return AVERROR(EINVAL);
633  }
634 
635  if (s->expr_str) {
636  switch (s->n) {
637  case 3: s->filter_freq_func = filter_freq_expr_8; break;
638  case 4: s->filter_freq_func = filter_freq_expr_16; break;
639  default: av_assert0(0);
640  }
641  } else {
642  switch (s->n) {
643  case 3: s->filter_freq_func = filter_freq_sigma_8; break;
644  case 4: s->filter_freq_func = filter_freq_sigma_16; break;
645  default: av_assert0(0);
646  }
647  }
648 
649  s->th = s->sigma * 3.;
650  s->step = s->bsize - s->overlap;
651  return 0;
652 }
653 
655 {
656  static const enum AVPixelFormat pix_fmts[] = {
660  };
662  if (!fmts_list)
663  return AVERROR(ENOMEM);
664  return ff_set_common_formats(ctx, fmts_list);
665 }
666 
667 typedef struct ThreadData {
668  float *src, *dst;
669 } ThreadData;
670 
672  void *arg, int jobnr, int nb_jobs)
673 {
674  int x, y;
675  DCTdnoizContext *s = ctx->priv;
676  const ThreadData *td = arg;
677  const int w = s->pr_width;
678  const int h = s->pr_height;
679  const int slice_start = (h * jobnr ) / nb_jobs;
680  const int slice_end = (h * (jobnr+1)) / nb_jobs;
681  const int slice_start_ctx = FFMAX(slice_start - s->bsize + 1, 0);
682  const int slice_end_ctx = FFMIN(slice_end, h - s->bsize + 1);
683  const int slice_h = slice_end_ctx - slice_start_ctx;
684  const int src_linesize = s->p_linesize;
685  const int dst_linesize = s->p_linesize;
686  const int slice_linesize = s->p_linesize;
687  float *dst;
688  const float *src = td->src + slice_start_ctx * src_linesize;
689  const float *weights = s->weights + slice_start * dst_linesize;
690  float *slice = s->slices[jobnr];
691 
692  // reset block sums
693  memset(slice, 0, (slice_h + s->bsize - 1) * dst_linesize * sizeof(*slice));
694 
695  // block dct sums
696  for (y = 0; y < slice_h; y += s->step) {
697  for (x = 0; x < w - s->bsize + 1; x += s->step)
698  s->filter_freq_func(s, src + x, src_linesize,
699  slice + x, slice_linesize,
700  jobnr);
701  src += s->step * src_linesize;
702  slice += s->step * slice_linesize;
703  }
704 
705  // average blocks
706  slice = s->slices[jobnr] + (slice_start - slice_start_ctx) * slice_linesize;
707  dst = td->dst + slice_start * dst_linesize;
708  for (y = slice_start; y < slice_end; y++) {
709  for (x = 0; x < w; x++)
710  dst[x] = slice[x] * weights[x];
711  slice += slice_linesize;
712  dst += dst_linesize;
713  weights += dst_linesize;
714  }
715 
716  return 0;
717 }
718 
719 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
720 {
721  AVFilterContext *ctx = inlink->dst;
722  DCTdnoizContext *s = ctx->priv;
723  AVFilterLink *outlink = inlink->dst->outputs[0];
724  int direct, plane;
725  AVFrame *out;
726 
727  if (av_frame_is_writable(in)) {
728  direct = 1;
729  out = in;
730  } else {
731  direct = 0;
732  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
733  if (!out) {
734  av_frame_free(&in);
735  return AVERROR(ENOMEM);
736  }
738  }
739 
740  s->color_decorrelation(s->cbuf[0], s->p_linesize,
741  (const uint8_t **)in->data, in->linesize[0],
742  s->pr_width, s->pr_height);
743  for (plane = 0; plane < 3; plane++) {
744  ThreadData td = {
745  .src = s->cbuf[0][plane],
746  .dst = s->cbuf[1][plane],
747  };
748  ctx->internal->execute(ctx, filter_slice, &td, NULL, s->nb_threads);
749  }
750  s->color_correlation(out->data, out->linesize[0],
751  s->cbuf[1], s->p_linesize,
752  s->pr_width, s->pr_height);
753 
754  if (!direct) {
755  int y;
756  uint8_t *dst = out->data[0];
757  const uint8_t *src = in->data[0];
758  const int dst_linesize = out->linesize[0];
759  const int src_linesize = in->linesize[0];
760  const int hpad = (inlink->w - s->pr_width) * 3;
761  const int vpad = (inlink->h - s->pr_height);
762 
763  if (hpad) {
764  uint8_t *dstp = dst + s->pr_width * 3;
765  const uint8_t *srcp = src + s->pr_width * 3;
766 
767  for (y = 0; y < s->pr_height; y++) {
768  memcpy(dstp, srcp, hpad);
769  dstp += dst_linesize;
770  srcp += src_linesize;
771  }
772  }
773  if (vpad) {
774  uint8_t *dstp = dst + s->pr_height * dst_linesize;
775  const uint8_t *srcp = src + s->pr_height * src_linesize;
776 
777  for (y = 0; y < vpad; y++) {
778  memcpy(dstp, srcp, inlink->w * 3);
779  dstp += dst_linesize;
780  srcp += src_linesize;
781  }
782  }
783 
784  av_frame_free(&in);
785  }
786 
787  return ff_filter_frame(outlink, out);
788 }
789 
791 {
792  int i;
793  DCTdnoizContext *s = ctx->priv;
794 
795  av_freep(&s->weights);
796  for (i = 0; i < 2; i++) {
797  av_freep(&s->cbuf[i][0]);
798  av_freep(&s->cbuf[i][1]);
799  av_freep(&s->cbuf[i][2]);
800  }
801  for (i = 0; i < s->nb_threads; i++) {
802  av_freep(&s->slices[i]);
803  av_expr_free(s->expr[i]);
804  }
805 }
806 
807 static const AVFilterPad dctdnoiz_inputs[] = {
808  {
809  .name = "default",
810  .type = AVMEDIA_TYPE_VIDEO,
811  .filter_frame = filter_frame,
812  .config_props = config_input,
813  },
814  { NULL }
815 };
816 
817 static const AVFilterPad dctdnoiz_outputs[] = {
818  {
819  .name = "default",
820  .type = AVMEDIA_TYPE_VIDEO,
821  },
822  { NULL }
823 };
824 
826  .name = "dctdnoiz",
827  .description = NULL_IF_CONFIG_SMALL("Denoise frames using 2D DCT."),
828  .priv_size = sizeof(DCTdnoizContext),
829  .init = init,
830  .uninit = uninit,
834  .priv_class = &dctdnoiz_class,
836 };
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
#define av_always_inline
Definition: attributes.h:45
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
uint8_t
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1094
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:802
#define flags(name, subs,...)
Definition: cbs_av1.c:561
#define s(width, name)
Definition: cbs_vp9.c:257
#define FFMIN(a, b)
Definition: common.h:105
#define FFMAX(a, b)
Definition: common.h:103
#define av_clip_uint8
Definition: common.h:128
#define FFMIN3(a, b, c)
Definition: common.h:106
#define NULL
Definition: coverity.c:32
static __device__ float ceilf(float a)
Definition: cuda_runtime.h:175
static float add(float src0, float src1)
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
Definition: eval.c:336
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
Definition: eval.c:685
simple arithmetic expression evaluator
int
int ff_set_common_formats(AVFilterContext *ctx, AVFilterFormats *formats)
A helper for query_formats() which sets all links to the same list of formats.
Definition: formats.c:587
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:286
@ AV_OPT_TYPE_INT
Definition: opt.h:225
@ AV_OPT_TYPE_FLOAT
Definition: opt.h:228
@ AV_OPT_TYPE_STRING
Definition: opt.h:229
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
Definition: avfilter.h:126
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:117
#define AVERROR(e)
Definition: error.h:43
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Definition: frame.c:594
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:658
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
Definition: mem.c:245
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
static const int weights[]
Definition: hevc_pel.c:32
int i
Definition: input.c:407
const char * arg
Definition: jacosubdec.c:66
static void direct(const float *in, const FFTComplex *ir, int len, float *out)
Definition: af_afir.c:60
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:303
uint8_t w
Definition: llviddspenc.c:39
#define FFALIGN(x, a)
Definition: macros.h:48
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
Definition: mpeg12dec.c:2033
AVOptions.
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
#define td
Definition: regdef.h:70
typedef void(RENAME(mix_any_func_type))
Describe the class of an AVClass context structure.
Definition: log.h:67
Definition: eval.c:157
An instance of a filter.
Definition: avfilter.h:341
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:353
A list of supported formats for one end of a filter link.
Definition: formats.h:65
A filter pad used for either input or output.
Definition: internal.h:54
const char * name
Pad name.
Definition: internal.h:60
Filter definition.
Definition: avfilter.h:145
const char * name
Filter name.
Definition: avfilter.h:149
AVFormatInternal * internal
An opaque field for libavformat internal usage.
Definition: avformat.h:1699
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
AVOption.
Definition: opt.h:248
void(* color_correlation)(uint8_t **dst, int dst_linesize, float **src, int src_linesize, int w, int h)
Definition: vf_dctdnoiz.c:69
double var_values[MAX_THREADS][VAR_VARS_NB]
Definition: vf_dctdnoiz.c:48
AVExpr * expr[MAX_THREADS]
Definition: vf_dctdnoiz.c:47
void(* filter_freq_func)(struct DCTdnoizContext *s, const float *src, int src_linesize, float *dst, int dst_linesize, int thread_id)
Definition: vf_dctdnoiz.c:62
float * cbuf[2][3]
Definition: vf_dctdnoiz.c:54
void(* color_decorrelation)(float **dst, int dst_linesize, const uint8_t **src, int src_linesize, int w, int h)
Definition: vf_dctdnoiz.c:66
float * slices[MAX_THREADS]
Definition: vf_dctdnoiz.c:55
float * weights
Definition: vf_dctdnoiz.c:56
Used for passing data between threads.
Definition: dsddec.c:67
float * dst
Definition: vf_dctdnoiz.c:668
const uint8_t * src
Definition: vf_bm3d.c:56
Definition: rpzaenc.c:58
#define av_free(p)
#define av_malloc_array(a, b)
#define av_freep(p)
#define av_malloc(s)
#define av_log(a,...)
#define src
Definition: vp8dsp.c:255
FILE * out
Definition: movenc.c:54
AVFormatContext * ctx
Definition: movenc.c:48
const char * b
Definition: vf_curves.c:118
const char * g
Definition: vf_curves.c:117
const char * r
Definition: vf_curves.c:116
#define MAX_NBITS
Definition: vf_dctdnoiz.c:75
static av_always_inline void color_correlation(uint8_t **dst, int dst_linesize, float **src, int src_linesize, int w, int h, int r, int g, int b)
Definition: vf_dctdnoiz.c:436
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_dctdnoiz.c:671
#define DCT3X3_0_0
Definition: vf_dctdnoiz.c:402
#define DCT3X3_2_0
Definition: vf_dctdnoiz.c:407
static void av_always_inline idct16_1d(float *dst, const float *src, int dst_stridea, int dst_strideb, int src_stridea, int src_strideb, int add)
Definition: vf_dctdnoiz.c:258
#define DCT3X3_0_2
Definition: vf_dctdnoiz.c:404
#define DCT3X3_2_1
Definition: vf_dctdnoiz.c:408
AVFilter ff_vf_dctdnoiz
Definition: vf_dctdnoiz.c:825
static int query_formats(AVFilterContext *ctx)
Definition: vf_dctdnoiz.c:654
static const AVFilterPad dctdnoiz_outputs[]
Definition: vf_dctdnoiz.c:817
static int config_input(AVFilterLink *inlink)
Definition: vf_dctdnoiz.c:533
#define FLAGS
Definition: vf_dctdnoiz.c:79
#define DEFAULT_NBITS
Definition: vf_dctdnoiz.c:76
static void av_always_inline fdct8_1d(float *dst, const float *src, int dst_stridea, int dst_strideb, int src_stridea, int src_strideb)
Definition: vf_dctdnoiz.c:92
#define MIN_NBITS
Definition: vf_dctdnoiz.c:74
static av_always_inline void color_decorrelation(float **dst, int dst_linesize, const uint8_t **src, int src_linesize, int w, int h, int r, int g, int b)
Definition: vf_dctdnoiz.c:411
#define MAX_THREADS
Definition: vf_dctdnoiz.c:40
#define DCT3X3_1_0
Definition: vf_dctdnoiz.c:405
#define DCT3X3_1_2
Definition: vf_dctdnoiz.c:406
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Definition: vf_dctdnoiz.c:719
static av_always_inline void color_decorrelation_gbrp(float **dst, int dst_linesize, const uint8_t **src, int src_linesize, int w, int h)
Definition: vf_dctdnoiz.c:479
static const AVOption dctdnoiz_options[]
Definition: vf_dctdnoiz.c:80
static void av_always_inline fdct16_1d(float *dst, const float *src, int dst_stridea, int dst_strideb, int src_stridea, int src_strideb)
Definition: vf_dctdnoiz.c:174
static void av_always_inline idct8_1d(float *dst, const float *src, int dst_stridea, int dst_strideb, int src_stridea, int src_strideb, int add)
Definition: vf_dctdnoiz.c:130
static const char *const var_names[]
A simple, relatively efficient and slow DCT image denoiser.
Definition: vf_dctdnoiz.c:37
AVFILTER_DEFINE_CLASS(dctdnoiz)
static av_always_inline void color_correlation_gbrp(uint8_t **dst, int dst_linesize, float **src, int src_linesize, int w, int h)
Definition: vf_dctdnoiz.c:506
static av_cold int init(AVFilterContext *ctx)
Definition: vf_dctdnoiz.c:620
static av_cold void uninit(AVFilterContext *ctx)
Definition: vf_dctdnoiz.c:790
static const AVFilterPad dctdnoiz_inputs[]
Definition: vf_dctdnoiz.c:807
#define OFFSET(x)
Definition: vf_dctdnoiz.c:78
#define DECLARE_COLOR_FUNCS(name, r, g, b)
Definition: vf_dctdnoiz.c:461
#define DEF_FILTER_FREQ_FUNCS(bsize)
Definition: vf_dctdnoiz.c:353
#define DCT3X3_2_2
Definition: vf_dctdnoiz.c:409
#define DCT3X3_0_1
Definition: vf_dctdnoiz.c:403
@ VAR_VARS_NB
Definition: vf_dctdnoiz.c:38
@ VAR_C
Definition: vf_dctdnoiz.c:38
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:99