FFmpeg  4.4
vf_normalize.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017 Richard Ling
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /*
22  * Normalize RGB video (aka histogram stretching, contrast stretching).
23  * See: https://en.wikipedia.org/wiki/Normalization_(image_processing)
24  *
25  * For each channel of each frame, the filter computes the input range and maps
26  * it linearly to the user-specified output range. The output range defaults
27  * to the full dynamic range from pure black to pure white.
28  *
29  * Naively maximising the dynamic range of each frame of video in isolation
30  * may cause flickering (rapid changes in brightness of static objects in the
31  * scene) when small dark or bright objects enter or leave the scene. This
32  * filter can apply temporal smoothing to the input range to reduce flickering.
33  * Temporal smoothing is similar to the auto-exposure (automatic gain control)
34  * on a video camera, which performs the same function; and, like a video
35  * camera, it may cause a period of over- or under-exposure of the video.
36  *
37  * The filter can normalize the R,G,B channels independently, which may cause
38  * color shifting, or link them together as a single channel, which prevents
39  * color shifting. More precisely, linked normalization preserves hue (as it's
40  * defined in HSV/HSL color spaces) while independent normalization does not.
41  * Independent normalization can be used to remove color casts, such as the
42  * blue cast from underwater video, restoring more natural colors. The filter
43  * can also combine independent and linked normalization in any ratio.
44  *
45  * Finally the overall strength of the filter can be adjusted, from no effect
46  * to full normalization.
47  *
48  * The 5 AVOptions are:
49  * blackpt, Colors which define the output range. The minimum input value
50  * whitept is mapped to the blackpt. The maximum input value is mapped to
51  * the whitept. The defaults are black and white respectively.
52  * Specifying white for blackpt and black for whitept will give
53  * color-inverted, normalized video. Shades of grey can be used
54  * to reduce the dynamic range (contrast). Specifying saturated
55  * colors here can create some interesting effects.
56  *
57  * smoothing The amount of temporal smoothing, expressed in frames (>=0).
58  * the minimum and maximum input values of each channel are
59  * smoothed using a rolling average over the current frame and
60  * that many previous frames of video. Defaults to 0 (no temporal
61  * smoothing).
62  *
63  * independence
64  * Controls the ratio of independent (color shifting) channel
65  * normalization to linked (color preserving) normalization. 0.0
66  * is fully linked, 1.0 is fully independent. Defaults to fully
67  * independent.
68  *
69  * strength Overall strength of the filter. 1.0 is full strength. 0.0 is
70  * a rather expensive no-op. Values in between can give a gentle
71  * boost to low-contrast video without creating an artificial
72  * over-processed look. The default is full strength.
73  */
74 
75 #include "libavutil/imgutils.h"
76 #include "libavutil/intreadwrite.h"
77 #include "libavutil/opt.h"
78 #include "libavutil/pixdesc.h"
79 #include "avfilter.h"
80 #include "drawutils.h"
81 #include "formats.h"
82 #include "internal.h"
83 #include "video.h"
84 
85 typedef struct NormalizeHistory {
86  uint16_t *history; // History entries.
87  uint64_t history_sum; // Sum of history entries.
89 
90 typedef struct NormalizeLocal {
91  uint16_t in; // Original input byte value for this frame.
92  float smoothed; // Smoothed input value [0,255].
93  float out; // Output value [0,255]
95 
96 typedef struct NormalizeContext {
97  const AVClass *class;
98 
99  // Storage for the corresponding AVOptions
104  float strength;
105 
106  uint8_t co[4]; // Offsets to R,G,B,A bytes respectively in each pixel
107  int depth;
108  int sblackpt[4];
109  int swhitept[4];
110  int num_components; // Number of components in the pixel format
111  int step;
112  int history_len; // Number of frames to average; based on smoothing factor
113  int frame_num; // Increments on each frame, starting from 0.
114 
115  // Per-extremum, per-channel history, for temporal smoothing.
116  NormalizeHistory min[3], max[3]; // Min and max for each channel in {R,G,B}.
117  uint16_t *history_mem; // Single allocation for above history entries
118 
119  uint16_t lut[3][65536]; // Lookup table
120 
124 
125 #define OFFSET(x) offsetof(NormalizeContext, x)
126 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
127 #define FLAGSR AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
128 
129 static const AVOption normalize_options[] = {
130  { "blackpt", "output color to which darkest input color is mapped", OFFSET(blackpt), AV_OPT_TYPE_COLOR, { .str = "black" }, 0, 0, FLAGSR },
131  { "whitept", "output color to which brightest input color is mapped", OFFSET(whitept), AV_OPT_TYPE_COLOR, { .str = "white" }, 0, 0, FLAGSR },
132  { "smoothing", "amount of temporal smoothing of the input range, to reduce flicker", OFFSET(smoothing), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX/8, FLAGS },
133  { "independence", "proportion of independent to linked channel normalization", OFFSET(independence), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, 0.0, 1.0, FLAGSR },
134  { "strength", "strength of filter, from no effect to full normalization", OFFSET(strength), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, 0.0, 1.0, FLAGSR },
135  { NULL }
136 };
137 
139 
141 {
142  for (int c = 0; c < 3; c++)
143  min[c].in = max[c].in = in->data[0][s->co[c]];
144  for (int y = 0; y < in->height; y++) {
145  uint8_t *inp = in->data[0] + y * in->linesize[0];
146  for (int x = 0; x < in->width; x++) {
147  for (int c = 0; c < 3; c++) {
148  min[c].in = FFMIN(min[c].in, inp[s->co[c]]);
149  max[c].in = FFMAX(max[c].in, inp[s->co[c]]);
150  }
151  inp += s->step;
152  }
153  }
154 }
155 
157 {
158  for (int y = 0; y < in->height; y++) {
159  uint8_t *inp = in->data[0] + y * in->linesize[0];
160  uint8_t *outp = out->data[0] + y * out->linesize[0];
161  for (int x = 0; x < in->width; x++) {
162  for (int c = 0; c < 3; c++)
163  outp[s->co[c]] = s->lut[c][inp[s->co[c]]];
164  if (s->num_components == 4)
165  // Copy alpha as-is.
166  outp[s->co[3]] = inp[s->co[3]];
167  inp += s->step;
168  outp += s->step;
169  }
170  }
171 }
172 
174 {
175  min[0].in = max[0].in = in->data[2][0];
176  min[1].in = max[1].in = in->data[0][0];
177  min[2].in = max[2].in = in->data[1][0];
178  for (int y = 0; y < in->height; y++) {
179  uint8_t *inrp = in->data[2] + y * in->linesize[2];
180  uint8_t *ingp = in->data[0] + y * in->linesize[0];
181  uint8_t *inbp = in->data[1] + y * in->linesize[1];
182  for (int x = 0; x < in->width; x++) {
183  min[0].in = FFMIN(min[0].in, inrp[x]);
184  max[0].in = FFMAX(max[0].in, inrp[x]);
185  min[1].in = FFMIN(min[1].in, ingp[x]);
186  max[1].in = FFMAX(max[1].in, ingp[x]);
187  min[2].in = FFMIN(min[2].in, inbp[x]);
188  max[2].in = FFMAX(max[2].in, inbp[x]);
189  }
190  }
191 }
192 
194 {
195  for (int y = 0; y < in->height; y++) {
196  uint8_t *inrp = in->data[2] + y * in->linesize[2];
197  uint8_t *ingp = in->data[0] + y * in->linesize[0];
198  uint8_t *inbp = in->data[1] + y * in->linesize[1];
199  uint8_t *inap = in->data[3] + y * in->linesize[3];
200  uint8_t *outrp = out->data[2] + y * out->linesize[2];
201  uint8_t *outgp = out->data[0] + y * out->linesize[0];
202  uint8_t *outbp = out->data[1] + y * out->linesize[1];
203  uint8_t *outap = out->data[3] + y * out->linesize[3];
204  for (int x = 0; x < in->width; x++) {
205  outrp[x] = s->lut[0][inrp[x]];
206  outgp[x] = s->lut[1][ingp[x]];
207  outbp[x] = s->lut[2][inbp[x]];
208  if (s->num_components == 4)
209  outap[x] = inap[x];
210  }
211  }
212 }
213 
215 {
216  for (int c = 0; c < 3; c++)
217  min[c].in = max[c].in = AV_RN16(in->data[0] + 2 * s->co[c]);
218  for (int y = 0; y < in->height; y++) {
219  uint16_t *inp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
220  for (int x = 0; x < in->width; x++) {
221  for (int c = 0; c < 3; c++) {
222  min[c].in = FFMIN(min[c].in, inp[s->co[c]]);
223  max[c].in = FFMAX(max[c].in, inp[s->co[c]]);
224  }
225  inp += s->step;
226  }
227  }
228 }
229 
231 {
232  for (int y = 0; y < in->height; y++) {
233  uint16_t *inp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
234  uint16_t *outp = (uint16_t *)(out->data[0] + y * out->linesize[0]);
235  for (int x = 0; x < in->width; x++) {
236  for (int c = 0; c < 3; c++)
237  outp[s->co[c]] = s->lut[c][inp[s->co[c]]];
238  if (s->num_components == 4)
239  // Copy alpha as-is.
240  outp[s->co[3]] = inp[s->co[3]];
241  inp += s->step;
242  outp += s->step;
243  }
244  }
245 }
246 
248 {
249  min[0].in = max[0].in = AV_RN16(in->data[2]);
250  min[1].in = max[1].in = AV_RN16(in->data[0]);
251  min[2].in = max[2].in = AV_RN16(in->data[1]);
252  for (int y = 0; y < in->height; y++) {
253  uint16_t *inrp = (uint16_t *)(in->data[2] + y * in->linesize[2]);
254  uint16_t *ingp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
255  uint16_t *inbp = (uint16_t *)(in->data[1] + y * in->linesize[1]);
256  for (int x = 0; x < in->width; x++) {
257  min[0].in = FFMIN(min[0].in, inrp[x]);
258  max[0].in = FFMAX(max[0].in, inrp[x]);
259  min[1].in = FFMIN(min[1].in, ingp[x]);
260  max[1].in = FFMAX(max[1].in, ingp[x]);
261  min[2].in = FFMIN(min[2].in, inbp[x]);
262  max[2].in = FFMAX(max[2].in, inbp[x]);
263  }
264  }
265 }
266 
268 {
269  for (int y = 0; y < in->height; y++) {
270  uint16_t *inrp = (uint16_t *)(in->data[2] + y * in->linesize[2]);
271  uint16_t *ingp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
272  uint16_t *inbp = (uint16_t *)(in->data[1] + y * in->linesize[1]);
273  uint16_t *inap = (uint16_t *)(in->data[3] + y * in->linesize[3]);
274  uint16_t *outrp = (uint16_t *)(out->data[2] + y * out->linesize[2]);
275  uint16_t *outgp = (uint16_t *)(out->data[0] + y * out->linesize[0]);
276  uint16_t *outbp = (uint16_t *)(out->data[1] + y * out->linesize[1]);
277  uint16_t *outap = (uint16_t *)(out->data[3] + y * out->linesize[3]);
278  for (int x = 0; x < in->width; x++) {
279  outrp[x] = s->lut[0][inrp[x]];
280  outgp[x] = s->lut[1][ingp[x]];
281  outbp[x] = s->lut[2][inbp[x]];
282  if (s->num_components == 4)
283  outap[x] = inap[x];
284  }
285  }
286 }
287 
288 // This function is the main guts of the filter. Normalizes the input frame
289 // into the output frame. The frames are known to have the same dimensions
290 // and pixel format.
292 {
293  // Per-extremum, per-channel local variables.
294  NormalizeLocal min[3], max[3]; // Min and max for each channel in {R,G,B}.
295 
296  float rgb_min_smoothed; // Min input range for linked normalization
297  float rgb_max_smoothed; // Max input range for linked normalization
298  int c;
299 
300  // First, scan the input frame to find, for each channel, the minimum
301  // (min.in) and maximum (max.in) values present in the channel.
302  s->find_min_max(s, in, min, max);
303 
304  // Next, for each channel, push min.in and max.in into their respective
305  // histories, to determine the min.smoothed and max.smoothed for this frame.
306  {
307  int history_idx = s->frame_num % s->history_len;
308  // Assume the history is not yet full; num_history_vals is the number
309  // of frames received so far including the current frame.
310  int num_history_vals = s->frame_num + 1;
311  if (s->frame_num >= s->history_len) {
312  //The history is full; drop oldest value and cap num_history_vals.
313  for (c = 0; c < 3; c++) {
314  s->min[c].history_sum -= s->min[c].history[history_idx];
315  s->max[c].history_sum -= s->max[c].history[history_idx];
316  }
317  num_history_vals = s->history_len;
318  }
319  // For each extremum, update history_sum and calculate smoothed value
320  // as the rolling average of the history entries.
321  for (c = 0; c < 3; c++) {
322  s->min[c].history_sum += (s->min[c].history[history_idx] = min[c].in);
323  min[c].smoothed = s->min[c].history_sum / (float)num_history_vals;
324  s->max[c].history_sum += (s->max[c].history[history_idx] = max[c].in);
325  max[c].smoothed = s->max[c].history_sum / (float)num_history_vals;
326  }
327  }
328 
329  // Determine the input range for linked normalization. This is simply the
330  // minimum of the per-channel minimums, and the maximum of the per-channel
331  // maximums.
332  rgb_min_smoothed = FFMIN3(min[0].smoothed, min[1].smoothed, min[2].smoothed);
333  rgb_max_smoothed = FFMAX3(max[0].smoothed, max[1].smoothed, max[2].smoothed);
334 
335  // Now, process each channel to determine the input and output range and
336  // build the lookup tables.
337  for (c = 0; c < 3; c++) {
338  int in_val;
339  // Adjust the input range for this channel [min.smoothed,max.smoothed]
340  // by mixing in the correct proportion of the linked normalization
341  // input range [rgb_min_smoothed,rgb_max_smoothed].
342  min[c].smoothed = (min[c].smoothed * s->independence)
343  + (rgb_min_smoothed * (1.0f - s->independence));
344  max[c].smoothed = (max[c].smoothed * s->independence)
345  + (rgb_max_smoothed * (1.0f - s->independence));
346 
347  // Calculate the output range [min.out,max.out] as a ratio of the full-
348  // strength output range [blackpt,whitept] and the original input range
349  // [min.in,max.in], based on the user-specified filter strength.
350  min[c].out = (s->sblackpt[c] * s->strength)
351  + (min[c].in * (1.0f - s->strength));
352  max[c].out = (s->swhitept[c] * s->strength)
353  + (max[c].in * (1.0f - s->strength));
354 
355  // Now, build a lookup table which linearly maps the adjusted input range
356  // [min.smoothed,max.smoothed] to the output range [min.out,max.out].
357  // Perform the linear interpolation for each x:
358  // lut[x] = (int)(float(x - min.smoothed) * scale + max.out + 0.5)
359  // where scale = (max.out - min.out) / (max.smoothed - min.smoothed)
360  if (min[c].smoothed == max[c].smoothed) {
361  // There is no dynamic range to expand. No mapping for this channel.
362  for (in_val = min[c].in; in_val <= max[c].in; in_val++)
363  s->lut[c][in_val] = min[c].out;
364  } else {
365  // We must set lookup values for all values in the original input
366  // range [min.in,max.in]. Since the original input range may be
367  // larger than [min.smoothed,max.smoothed], some output values may
368  // fall outside the [0,255] dynamic range. We need to clamp them.
369  float scale = (max[c].out - min[c].out) / (max[c].smoothed - min[c].smoothed);
370  for (in_val = min[c].in; in_val <= max[c].in; in_val++) {
371  int out_val = (in_val - min[c].smoothed) * scale + min[c].out + 0.5f;
372  out_val = av_clip_uintp2_c(out_val, s->depth);
373  s->lut[c][in_val] = out_val;
374  }
375  }
376  }
377 
378  // Finally, process the pixels of the input frame using the lookup tables.
379  s->process(s, in, out);
380 
381  s->frame_num++;
382 }
383 
384 // Now we define all the functions accessible from the ff_vf_normalize class,
385 // which is ffmpeg's interface to our filter. See doc/filter_design.txt and
386 // doc/writing_filters.txt for descriptions of what these interface functions
387 // are expected to do.
388 
389 // Set the pixel formats that our filter supports. We should be able to process
390 // any 8-bit RGB formats. 16-bit support might be useful one day.
392 {
393  static const enum AVPixelFormat pixel_fmts[] = {
410  };
411  // According to filter_design.txt, using ff_set_common_formats() this way
412  // ensures the pixel formats of the input and output will be the same. That
413  // saves a bit of effort possibly needing to handle format conversions.
415  if (!formats)
416  return AVERROR(ENOMEM);
418 }
419 
420 // At this point we know the pixel format used for both input and output. We
421 // can also access the frame rate of the input video and allocate some memory
422 // appropriately
423 static int config_input(AVFilterLink *inlink)
424 {
425  NormalizeContext *s = inlink->dst->priv;
426  // Store offsets to R,G,B,A bytes respectively in each pixel
428  int c, planar, scale;
429 
430  ff_fill_rgba_map(s->co, inlink->format);
431  s->depth = desc->comp[0].depth;
432  scale = 1 << (s->depth - 8);
433  s->num_components = desc->nb_components;
434  s->step = av_get_padded_bits_per_pixel(desc) >> (3 + (s->depth > 8));
435  // Convert smoothing value to history_len (a count of frames to average,
436  // must be at least 1). Currently this is a direct assignment, but the
437  // smoothing value was originally envisaged as a number of seconds. In
438  // future it would be nice to set history_len using a number of seconds,
439  // but VFR video is currently an obstacle to doing so.
440  s->history_len = s->smoothing + 1;
441  // Allocate the history buffers -- there are 6 -- one for each extrema.
442  // s->smoothing is limited to INT_MAX/8, so that (s->history_len * 6)
443  // can't overflow on 32bit causing a too-small allocation.
444  s->history_mem = av_malloc(s->history_len * 6 * sizeof(*s->history_mem));
445  if (s->history_mem == NULL)
446  return AVERROR(ENOMEM);
447 
448  for (c = 0; c < 3; c++) {
449  s->min[c].history = s->history_mem + (c*2) * s->history_len;
450  s->max[c].history = s->history_mem + (c*2+1) * s->history_len;
451  s->sblackpt[c] = scale * s->blackpt[c] + (s->blackpt[c] & (1 << (s->depth - 8)));
452  s->swhitept[c] = scale * s->whitept[c] + (s->whitept[c] & (1 << (s->depth - 8)));
453  }
454 
456 
457  if (s->depth <= 8) {
458  s->find_min_max = planar ? find_min_max_planar : find_min_max;
459  s->process = planar? process_planar : process;
460  } else {
461  s->find_min_max = planar ? find_min_max_planar_16 : find_min_max_16;
462  s->process = planar? process_planar_16 : process_16;
463  }
464 
465  return 0;
466 }
467 
468 // Free any memory allocations here
470 {
471  NormalizeContext *s = ctx->priv;
472 
473  av_freep(&s->history_mem);
474 }
475 
476 // This function is pretty much standard from doc/writing_filters.txt. It
477 // tries to do in-place filtering where possible, only allocating a new output
478 // frame when absolutely necessary.
479 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
480 {
481  AVFilterContext *ctx = inlink->dst;
482  AVFilterLink *outlink = ctx->outputs[0];
483  NormalizeContext *s = ctx->priv;
484  AVFrame *out;
485  // Set 'direct' if we can modify the input frame in-place. Otherwise we
486  // need to retrieve a new frame from the output link.
487  int direct = av_frame_is_writable(in) && !ctx->is_disabled;
488 
489  if (direct) {
490  out = in;
491  } else {
492  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
493  if (!out) {
494  av_frame_free(&in);
495  return AVERROR(ENOMEM);
496  }
498  }
499 
500  // Now we've got the input and output frames (which may be the same frame)
501  // perform the filtering with our custom function.
502  normalize(s, in, out);
503 
504  if (ctx->is_disabled) {
505  av_frame_free(&out);
506  return ff_filter_frame(outlink, in);
507  }
508 
509  if (!direct)
510  av_frame_free(&in);
511 
512  return ff_filter_frame(outlink, out);
513 }
514 
515 static const AVFilterPad inputs[] = {
516  {
517  .name = "default",
518  .type = AVMEDIA_TYPE_VIDEO,
519  .filter_frame = filter_frame,
520  .config_props = config_input,
521  },
522  { NULL }
523 };
524 
525 static const AVFilterPad outputs[] = {
526  {
527  .name = "default",
528  .type = AVMEDIA_TYPE_VIDEO,
529  },
530  { NULL }
531 };
532 
534  .name = "normalize",
535  .description = NULL_IF_CONFIG_SMALL("Normalize RGB video."),
536  .priv_size = sizeof(NormalizeContext),
537  .priv_class = &normalize_class,
538  .uninit = uninit,
540  .inputs = inputs,
541  .outputs = outputs,
544 };
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
Definition: af_acrusher.c:336
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
uint8_t
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
Definition: audioconvert.c:56
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1094
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
Definition: avfilter.c:882
Main libavfilter public API header.
#define flags(name, subs,...)
Definition: cbs_av1.c:561
#define s(width, name)
Definition: cbs_vp9.c:257
#define FFMAX3(a, b, c)
Definition: common.h:104
#define FFMIN(a, b)
Definition: common.h:105
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.
Definition: common.h:302
#define FFMAX(a, b)
Definition: common.h:103
#define FFMIN3(a, b, c)
Definition: common.h:106
#define NULL
Definition: coverity.c:32
#define max(a, b)
Definition: cuda_runtime.h:33
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
Definition: drawutils.c:35
misc drawing utilities
int ff_set_common_formats(AVFilterContext *ctx, AVFilterFormats *formats)
A helper for query_formats() which sets all links to the same list of formats.
Definition: formats.c:587
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:286
@ AV_OPT_TYPE_INT
Definition: opt.h:225
@ AV_OPT_TYPE_FLOAT
Definition: opt.h:228
@ AV_OPT_TYPE_COLOR
Definition: opt.h:240
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
Definition: avfilter.h:134
#define AVERROR(e)
Definition: error.h:43
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Definition: frame.c:594
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:658
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
for(j=16;j >0;--j)
misc image utilities
#define AV_RN16(p)
Definition: intreadwrite.h:360
static void direct(const float *in, const FFTComplex *ir, int len, float *out)
Definition: af_afir.c:60
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
const char * desc
Definition: libsvtav1.c:79
AVOptions.
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
Definition: pixdesc.c:2538
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2573
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
Definition: pixdesc.h:144
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:420
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:421
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:414
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:390
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:415
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:389
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:416
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:385
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:394
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:419
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:418
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:417
typedef void(RENAME(mix_any_func_type))
formats
Definition: signature.h:48
Describe the class of an AVClass context structure.
Definition: log.h:67
An instance of a filter.
Definition: avfilter.h:341
void * priv
private data for use by the filter
Definition: avfilter.h:356
A list of supported formats for one end of a filter link.
Definition: formats.h:65
A filter pad used for either input or output.
Definition: internal.h:54
const char * name
Pad name.
Definition: internal.h:60
Filter definition.
Definition: avfilter.h:145
const char * name
Filter name.
Definition: avfilter.h:149
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
AVOption.
Definition: opt.h:248
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
NormalizeHistory min[3]
Definition: vf_normalize.c:116
uint8_t blackpt[4]
Definition: vf_normalize.c:100
uint16_t lut[3][65536]
Definition: vf_normalize.c:119
void(* process)(struct NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:122
uint16_t * history_mem
Definition: vf_normalize.c:117
void(* find_min_max)(struct NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
Definition: vf_normalize.c:121
uint8_t whitept[4]
Definition: vf_normalize.c:101
NormalizeHistory max[3]
Definition: vf_normalize.c:116
uint16_t * history
Definition: vf_normalize.c:86
uint64_t history_sum
Definition: vf_normalize.c:87
#define av_freep(p)
#define av_malloc(s)
FILE * out
Definition: movenc.c:54
AVFormatContext * ctx
Definition: movenc.c:48
if(ret< 0)
Definition: vf_mcdeint.c:282
static void find_min_max_planar(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
Definition: vf_normalize.c:173
#define FLAGSR
Definition: vf_normalize.c:127
static void normalize(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:291
static const AVOption normalize_options[]
Definition: vf_normalize.c:129
static void process_planar(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:193
static void process(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:156
static int query_formats(AVFilterContext *ctx)
Definition: vf_normalize.c:391
static int config_input(AVFilterLink *inlink)
Definition: vf_normalize.c:423
#define FLAGS
Definition: vf_normalize.c:126
static const AVFilterPad inputs[]
Definition: vf_normalize.c:515
static const AVFilterPad outputs[]
Definition: vf_normalize.c:525
static void process_16(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:230
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Definition: vf_normalize.c:479
static void find_min_max_planar_16(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
Definition: vf_normalize.c:247
AVFILTER_DEFINE_CLASS(normalize)
static av_cold void uninit(AVFilterContext *ctx)
Definition: vf_normalize.c:469
AVFilter ff_vf_normalize
Definition: vf_normalize.c:533
static void process_planar_16(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:267
static void find_min_max_16(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
Definition: vf_normalize.c:214
#define OFFSET(x)
Definition: vf_normalize.c:125
static void find_min_max(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
Definition: vf_normalize.c:140
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:99
float min
static double c[64]