FFmpeg  4.4
aacsbr_template.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * Fixed point code
7  * Copyright (c) 2013
8  * MIPS Technologies, Inc., California.
9  *
10  * This file is part of FFmpeg.
11  *
12  * FFmpeg is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * FFmpeg is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with FFmpeg; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  */
26 
27 /**
28  * @file
29  * AAC Spectral Band Replication decoding functions
30  * @author Robert Swain ( rob opendot cl )
31  * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32  * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33  */
34 
35 #include "libavutil/qsort.h"
36 
37 static av_cold void aacsbr_tableinit(void)
38 {
39  int n;
40 
41  for (n = 0; n < 320; n++)
43 }
44 
46 {
47  static const struct {
48  const void *sbr_codes, *sbr_bits;
49  const unsigned int table_size, elem_size;
50  } sbr_tmp[] = {
51  SBR_VLC_ROW(t_huffman_env_1_5dB),
52  SBR_VLC_ROW(f_huffman_env_1_5dB),
53  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
54  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
55  SBR_VLC_ROW(t_huffman_env_3_0dB),
56  SBR_VLC_ROW(f_huffman_env_3_0dB),
57  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
58  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
59  SBR_VLC_ROW(t_huffman_noise_3_0dB),
60  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
61  };
62 
63  // SBR VLC table initialization
64  SBR_INIT_VLC_STATIC(0, 1098);
65  SBR_INIT_VLC_STATIC(1, 1092);
66  SBR_INIT_VLC_STATIC(2, 768);
67  SBR_INIT_VLC_STATIC(3, 1026);
68  SBR_INIT_VLC_STATIC(4, 1058);
69  SBR_INIT_VLC_STATIC(5, 1052);
70  SBR_INIT_VLC_STATIC(6, 544);
71  SBR_INIT_VLC_STATIC(7, 544);
72  SBR_INIT_VLC_STATIC(8, 592);
73  SBR_INIT_VLC_STATIC(9, 512);
74 
76 
78 }
79 
80 /** Places SBR in pure upsampling mode. */
82  sbr->start = 0;
83  sbr->ready_for_dequant = 0;
84  // Init defults used in pure upsampling mode
85  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
86  sbr->m[1] = 0;
87  // Reset values for first SBR header
88  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
89  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
90 }
91 
93 {
94  if(sbr->mdct.mdct_bits)
95  return;
96  sbr->kx[0] = sbr->kx[1];
97  sbr->id_aac = id_aac;
98  sbr_turnoff(sbr);
99  sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
100  sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
101  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
102  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
103  * and scale back down at synthesis. */
104  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
105  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
106  AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
107  AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
108  aacsbr_func_ptr_init(&sbr->c);
109 }
110 
112 {
113  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
114  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
115 }
116 
117 static int qsort_comparison_function_int16(const void *a, const void *b)
118 {
119  return *(const int16_t *)a - *(const int16_t *)b;
120 }
121 
122 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
123 {
124  int i;
125  for (i = 0; i <= last_el; i++)
126  if (table[i] == needle)
127  return 1;
128  return 0;
129 }
130 
131 /// Limiter Frequency Band Table (14496-3 sp04 p198)
133 {
134  int k;
135  if (sbr->bs_limiter_bands > 0) {
136  static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
137  Q23(1.18509277094158210129f), //2^(0.49/2)
138  Q23(1.11987160404675912501f) }; //2^(0.49/3)
139  const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
140  int16_t patch_borders[7];
141  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
142 
143  patch_borders[0] = sbr->kx[1];
144  for (k = 1; k <= sbr->num_patches; k++)
145  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
146 
147  memcpy(sbr->f_tablelim, sbr->f_tablelow,
148  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
149  if (sbr->num_patches > 1)
150  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
151  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
152 
153  AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
154  uint16_t,
156 
157  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
158  while (out < sbr->f_tablelim + sbr->n_lim) {
159 #if USE_FIXED
160  if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
161 #else
162  if (*in >= *out * lim_bands_per_octave_warped) {
163 #endif /* USE_FIXED */
164  *++out = *in++;
165  } else if (*in == *out ||
166  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
167  in++;
168  sbr->n_lim--;
169  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
170  *out = *in++;
171  sbr->n_lim--;
172  } else {
173  *++out = *in++;
174  }
175  }
176  } else {
177  sbr->f_tablelim[0] = sbr->f_tablelow[0];
178  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
179  sbr->n_lim = 1;
180  }
181 }
182 
184 {
185  unsigned int cnt = get_bits_count(gb);
186  uint8_t bs_header_extra_1;
187  uint8_t bs_header_extra_2;
188  int old_bs_limiter_bands = sbr->bs_limiter_bands;
189  SpectrumParameters old_spectrum_params;
190 
191  sbr->start = 1;
192  sbr->ready_for_dequant = 0;
193 
194  // Save last spectrum parameters variables to compare to new ones
195  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
196 
197  sbr->bs_amp_res_header = get_bits1(gb);
198  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
199  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
200  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
201  skip_bits(gb, 2); // bs_reserved
202 
203  bs_header_extra_1 = get_bits1(gb);
204  bs_header_extra_2 = get_bits1(gb);
205 
206  if (bs_header_extra_1) {
207  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
210  } else {
214  }
215 
216  // Check if spectrum parameters changed
217  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
218  sbr->reset = 1;
219 
220  if (bs_header_extra_2) {
221  sbr->bs_limiter_bands = get_bits(gb, 2);
222  sbr->bs_limiter_gains = get_bits(gb, 2);
223  sbr->bs_interpol_freq = get_bits1(gb);
224  sbr->bs_smoothing_mode = get_bits1(gb);
225  } else {
226  sbr->bs_limiter_bands = 2;
227  sbr->bs_limiter_gains = 2;
228  sbr->bs_interpol_freq = 1;
229  sbr->bs_smoothing_mode = 1;
230  }
231 
232  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
233  sbr_make_f_tablelim(sbr);
234 
235  return get_bits_count(gb) - cnt;
236 }
237 
238 static int array_min_int16(const int16_t *array, int nel)
239 {
240  int i, min = array[0];
241  for (i = 1; i < nel; i++)
242  min = FFMIN(array[i], min);
243  return min;
244 }
245 
246 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
247 {
248  // Requirements (14496-3 sp04 p205)
249  if (n_master <= 0) {
250  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
251  return -1;
252  }
253  if (bs_xover_band >= n_master) {
254  av_log(avctx, AV_LOG_ERROR,
255  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
256  bs_xover_band);
257  return -1;
258  }
259  return 0;
260 }
261 
262 /// Master Frequency Band Table (14496-3 sp04 p194)
264  SpectrumParameters *spectrum)
265 {
266  unsigned int temp, max_qmf_subbands = 0;
267  unsigned int start_min, stop_min;
268  int k;
269  const int8_t *sbr_offset_ptr;
270  int16_t stop_dk[13];
271 
272  switch (sbr->sample_rate) {
273  case 16000:
274  sbr_offset_ptr = sbr_offset[0];
275  break;
276  case 22050:
277  sbr_offset_ptr = sbr_offset[1];
278  break;
279  case 24000:
280  sbr_offset_ptr = sbr_offset[2];
281  break;
282  case 32000:
283  sbr_offset_ptr = sbr_offset[3];
284  break;
285  case 44100: case 48000: case 64000:
286  sbr_offset_ptr = sbr_offset[4];
287  break;
288  case 88200: case 96000: case 128000: case 176400: case 192000:
289  sbr_offset_ptr = sbr_offset[5];
290  break;
291  default:
293  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
294  return -1;
295  }
296 
297  if (sbr->sample_rate < 32000) {
298  temp = 3000;
299  } else if (sbr->sample_rate < 64000) {
300  temp = 4000;
301  } else
302  temp = 5000;
303 
304  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
305  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
306 
307  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
308 
309  if (spectrum->bs_stop_freq < 14) {
310  sbr->k[2] = stop_min;
311  make_bands(stop_dk, stop_min, 64, 13);
312  AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
313  for (k = 0; k < spectrum->bs_stop_freq; k++)
314  sbr->k[2] += stop_dk[k];
315  } else if (spectrum->bs_stop_freq == 14) {
316  sbr->k[2] = 2*sbr->k[0];
317  } else if (spectrum->bs_stop_freq == 15) {
318  sbr->k[2] = 3*sbr->k[0];
319  } else {
321  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
322  return -1;
323  }
324  sbr->k[2] = FFMIN(64, sbr->k[2]);
325 
326  // Requirements (14496-3 sp04 p205)
327  if (sbr->sample_rate <= 32000) {
328  max_qmf_subbands = 48;
329  } else if (sbr->sample_rate == 44100) {
330  max_qmf_subbands = 35;
331  } else if (sbr->sample_rate >= 48000)
332  max_qmf_subbands = 32;
333  else
334  av_assert0(0);
335 
336  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
338  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
339  return -1;
340  }
341 
342  if (!spectrum->bs_freq_scale) {
343  int dk, k2diff;
344 
345  dk = spectrum->bs_alter_scale + 1;
346  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
348  return -1;
349 
350  for (k = 1; k <= sbr->n_master; k++)
351  sbr->f_master[k] = dk;
352 
353  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
354  if (k2diff < 0) {
355  sbr->f_master[1]--;
356  sbr->f_master[2]-= (k2diff < -1);
357  } else if (k2diff) {
358  sbr->f_master[sbr->n_master]++;
359  }
360 
361  sbr->f_master[0] = sbr->k[0];
362  for (k = 1; k <= sbr->n_master; k++)
363  sbr->f_master[k] += sbr->f_master[k - 1];
364 
365  } else {
366  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
367  int two_regions, num_bands_0;
368  int vdk0_max, vdk1_min;
369  int16_t vk0[49];
370 #if USE_FIXED
371  int tmp, nz = 0;
372 #endif /* USE_FIXED */
373 
374  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
375  two_regions = 1;
376  sbr->k[1] = 2 * sbr->k[0];
377  } else {
378  two_regions = 0;
379  sbr->k[1] = sbr->k[2];
380  }
381 
382 #if USE_FIXED
383  tmp = (sbr->k[1] << 23) / sbr->k[0];
384  while (tmp < 0x40000000) {
385  tmp <<= 1;
386  nz++;
387  }
388  tmp = fixed_log(tmp - 0x80000000);
389  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
390  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
391  num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
392 #else
393  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
394 #endif /* USE_FIXED */
395 
396  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
397  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
398  return -1;
399  }
400 
401  vk0[0] = 0;
402 
403  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
404 
405  AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
406  vdk0_max = vk0[num_bands_0];
407 
408  vk0[0] = sbr->k[0];
409  for (k = 1; k <= num_bands_0; k++) {
410  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
411  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
412  return -1;
413  }
414  vk0[k] += vk0[k-1];
415  }
416 
417  if (two_regions) {
418  int16_t vk1[49];
419 #if USE_FIXED
420  int num_bands_1;
421 
422  tmp = (sbr->k[2] << 23) / sbr->k[1];
423  nz = 0;
424  while (tmp < 0x40000000) {
425  tmp <<= 1;
426  nz++;
427  }
428  tmp = fixed_log(tmp - 0x80000000);
429  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
430  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
431  if (spectrum->bs_alter_scale)
432  tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
433  num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
434 #else
435  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
436  : 1.0f; // bs_alter_scale = {0,1}
437  int num_bands_1 = lrintf(half_bands * invwarp *
438  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
439 #endif /* USE_FIXED */
440  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
441 
442  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
443 
444  if (vdk1_min < vdk0_max) {
445  int change;
446  AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
447  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
448  vk1[1] += change;
449  vk1[num_bands_1] -= change;
450  }
451 
452  AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
453 
454  vk1[0] = sbr->k[1];
455  for (k = 1; k <= num_bands_1; k++) {
456  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
457  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
458  return -1;
459  }
460  vk1[k] += vk1[k-1];
461  }
462 
463  sbr->n_master = num_bands_0 + num_bands_1;
465  return -1;
466  memcpy(&sbr->f_master[0], vk0,
467  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
468  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
469  num_bands_1 * sizeof(sbr->f_master[0]));
470 
471  } else {
472  sbr->n_master = num_bands_0;
474  return -1;
475  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
476  }
477  }
478 
479  return 0;
480 }
481 
482 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
484 {
485  int i, k, last_k = -1, last_msb = -1, sb = 0;
486  int msb = sbr->k[0];
487  int usb = sbr->kx[1];
488  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
489 
490  sbr->num_patches = 0;
491 
492  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
493  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
494  } else
495  k = sbr->n_master;
496 
497  do {
498  int odd = 0;
499  if (k == last_k && msb == last_msb) {
500  av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
501  return AVERROR_INVALIDDATA;
502  }
503  last_k = k;
504  last_msb = msb;
505  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
506  sb = sbr->f_master[i];
507  odd = (sb + sbr->k[0]) & 1;
508  }
509 
510  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
511  // After this check the final number of patches can still be six which is
512  // illegal however the Coding Technologies decoder check stream has a final
513  // count of 6 patches
514  if (sbr->num_patches > 5) {
515  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
516  return -1;
517  }
518 
519  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
520  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
521 
522  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
523  usb = sb;
524  msb = sb;
525  sbr->num_patches++;
526  } else
527  msb = sbr->kx[1];
528 
529  if (sbr->f_master[k] - sb < 3)
530  k = sbr->n_master;
531  } while (sb != sbr->kx[1] + sbr->m[1]);
532 
533  if (sbr->num_patches > 1 &&
534  sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
535  sbr->num_patches--;
536 
537  return 0;
538 }
539 
540 /// Derived Frequency Band Tables (14496-3 sp04 p197)
542 {
543  int k, temp;
544 #if USE_FIXED
545  int nz = 0;
546 #endif /* USE_FIXED */
547 
548  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
549  sbr->n[0] = (sbr->n[1] + 1) >> 1;
550 
551  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
552  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
553  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
554  sbr->kx[1] = sbr->f_tablehigh[0];
555 
556  // Requirements (14496-3 sp04 p205)
557  if (sbr->kx[1] + sbr->m[1] > 64) {
559  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
560  return -1;
561  }
562  if (sbr->kx[1] > 32) {
563  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
564  return -1;
565  }
566 
567  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
568  temp = sbr->n[1] & 1;
569  for (k = 1; k <= sbr->n[0]; k++)
570  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
571 #if USE_FIXED
572  temp = (sbr->k[2] << 23) / sbr->kx[1];
573  while (temp < 0x40000000) {
574  temp <<= 1;
575  nz++;
576  }
577  temp = fixed_log(temp - 0x80000000);
578  temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
579  temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
580 
581  sbr->n_q = (temp + 0x400000) >> 23;
582  if (sbr->n_q < 1)
583  sbr->n_q = 1;
584 #else
586  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
587 #endif /* USE_FIXED */
588 
589  if (sbr->n_q > 5) {
590  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
591  return -1;
592  }
593 
594  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
595  temp = 0;
596  for (k = 1; k <= sbr->n_q; k++) {
597  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
598  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
599  }
600 
601  if (sbr_hf_calc_npatches(ac, sbr) < 0)
602  return -1;
603 
604  sbr_make_f_tablelim(sbr);
605 
606  sbr->data[0].f_indexnoise = 0;
607  sbr->data[1].f_indexnoise = 0;
608 
609  return 0;
610 }
611 
613  int elements)
614 {
615  int i;
616  for (i = 0; i < elements; i++) {
617  vec[i] = get_bits1(gb);
618  }
619 }
620 
621 /** ceil(log2(index+1)) */
622 static const int8_t ceil_log2[] = {
623  0, 1, 2, 2, 3, 3,
624 };
625 
627  GetBitContext *gb, SBRData *ch_data)
628 {
629  int i;
630  int bs_pointer = 0;
631  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
632  int abs_bord_trail = 16;
633  int num_rel_lead, num_rel_trail;
634  unsigned bs_num_env_old = ch_data->bs_num_env;
635  int bs_frame_class, bs_num_env;
636 
637  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
638  ch_data->bs_amp_res = sbr->bs_amp_res_header;
639  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
640 
641  switch (bs_frame_class = get_bits(gb, 2)) {
642  case FIXFIX:
643  bs_num_env = 1 << get_bits(gb, 2);
644  if (bs_num_env > 4) {
646  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
647  bs_num_env);
648  return -1;
649  }
650  ch_data->bs_num_env = bs_num_env;
651  num_rel_lead = ch_data->bs_num_env - 1;
652  if (ch_data->bs_num_env == 1)
653  ch_data->bs_amp_res = 0;
654 
655 
656  ch_data->t_env[0] = 0;
657  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
658 
659  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
660  ch_data->bs_num_env;
661  for (i = 0; i < num_rel_lead; i++)
662  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
663 
664  ch_data->bs_freq_res[1] = get_bits1(gb);
665  for (i = 1; i < ch_data->bs_num_env; i++)
666  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
667  break;
668  case FIXVAR:
669  abs_bord_trail += get_bits(gb, 2);
670  num_rel_trail = get_bits(gb, 2);
671  ch_data->bs_num_env = num_rel_trail + 1;
672  ch_data->t_env[0] = 0;
673  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
674 
675  for (i = 0; i < num_rel_trail; i++)
676  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
677  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
678 
679  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
680 
681  for (i = 0; i < ch_data->bs_num_env; i++)
682  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
683  break;
684  case VARFIX:
685  ch_data->t_env[0] = get_bits(gb, 2);
686  num_rel_lead = get_bits(gb, 2);
687  ch_data->bs_num_env = num_rel_lead + 1;
688  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
689 
690  for (i = 0; i < num_rel_lead; i++)
691  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
692 
693  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
694 
695  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
696  break;
697  case VARVAR:
698  ch_data->t_env[0] = get_bits(gb, 2);
699  abs_bord_trail += get_bits(gb, 2);
700  num_rel_lead = get_bits(gb, 2);
701  num_rel_trail = get_bits(gb, 2);
702  bs_num_env = num_rel_lead + num_rel_trail + 1;
703 
704  if (bs_num_env > 5) {
706  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
707  bs_num_env);
708  return -1;
709  }
710  ch_data->bs_num_env = bs_num_env;
711 
712  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
713 
714  for (i = 0; i < num_rel_lead; i++)
715  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
716  for (i = 0; i < num_rel_trail; i++)
717  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
718  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
719 
720  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
721 
722  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
723  break;
724  }
725  ch_data->bs_frame_class = bs_frame_class;
726 
727  av_assert0(bs_pointer >= 0);
728  if (bs_pointer > ch_data->bs_num_env + 1) {
730  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
731  bs_pointer);
732  return -1;
733  }
734 
735  for (i = 1; i <= ch_data->bs_num_env; i++) {
736  if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
737  av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
738  return -1;
739  }
740  }
741 
742  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
743 
744  ch_data->t_q[0] = ch_data->t_env[0];
745  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
746  if (ch_data->bs_num_noise > 1) {
747  int idx;
748  if (ch_data->bs_frame_class == FIXFIX) {
749  idx = ch_data->bs_num_env >> 1;
750  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
751  idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
752  } else { // VARFIX
753  if (!bs_pointer)
754  idx = 1;
755  else if (bs_pointer == 1)
756  idx = ch_data->bs_num_env - 1;
757  else // bs_pointer > 1
758  idx = bs_pointer - 1;
759  }
760  ch_data->t_q[1] = ch_data->t_env[idx];
761  }
762 
763  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
764  ch_data->e_a[1] = -1;
765  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
766  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
767  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
768  ch_data->e_a[1] = bs_pointer - 1;
769 
770  return 0;
771 }
772 
773 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
774  //These variables are saved from the previous frame rather than copied
775  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
776  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
777  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
778 
779  //These variables are read from the bitstream and therefore copied
780  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
781  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
782  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
783  dst->bs_num_env = src->bs_num_env;
784  dst->bs_amp_res = src->bs_amp_res;
785  dst->bs_num_noise = src->bs_num_noise;
786  dst->bs_frame_class = src->bs_frame_class;
787  dst->e_a[1] = src->e_a[1];
788 }
789 
790 /// Read how the envelope and noise floor data is delta coded
792  SBRData *ch_data)
793 {
794  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
795  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
796 }
797 
798 /// Read inverse filtering data
800  SBRData *ch_data)
801 {
802  int i;
803 
804  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
805  for (i = 0; i < sbr->n_q; i++)
806  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
807 }
808 
810  SBRData *ch_data, int ch)
811 {
812  int bits;
813  int i, j, k;
814  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
815  int t_lav, f_lav;
816  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
817  const int odd = sbr->n[1] & 1;
818 
819  if (sbr->bs_coupling && ch) {
820  if (ch_data->bs_amp_res) {
821  bits = 5;
826  } else {
827  bits = 6;
832  }
833  } else {
834  if (ch_data->bs_amp_res) {
835  bits = 6;
840  } else {
841  bits = 7;
846  }
847  }
848 
849  for (i = 0; i < ch_data->bs_num_env; i++) {
850  if (ch_data->bs_df_env[i]) {
851  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
852  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
853  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
854  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
855  if (ch_data->env_facs_q[i + 1][j] > 127U) {
856  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
857  return AVERROR_INVALIDDATA;
858  }
859  }
860  } else if (ch_data->bs_freq_res[i + 1]) {
861  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
862  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
863  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
864  if (ch_data->env_facs_q[i + 1][j] > 127U) {
865  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
866  return AVERROR_INVALIDDATA;
867  }
868  }
869  } else {
870  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
871  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
872  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
873  if (ch_data->env_facs_q[i + 1][j] > 127U) {
874  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
875  return AVERROR_INVALIDDATA;
876  }
877  }
878  }
879  } else {
880  ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
881  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
882  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
883  if (ch_data->env_facs_q[i + 1][j] > 127U) {
884  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
885  return AVERROR_INVALIDDATA;
886  }
887  }
888  }
889  }
890 
891  //assign 0th elements of env_facs_q from last elements
892  memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
893  sizeof(ch_data->env_facs_q[0]));
894 
895  return 0;
896 }
897 
899  SBRData *ch_data, int ch)
900 {
901  int i, j;
902  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
903  int t_lav, f_lav;
904  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
905 
906  if (sbr->bs_coupling && ch) {
911  } else {
916  }
917 
918  for (i = 0; i < ch_data->bs_num_noise; i++) {
919  if (ch_data->bs_df_noise[i]) {
920  for (j = 0; j < sbr->n_q; j++) {
921  ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
922  if (ch_data->noise_facs_q[i + 1][j] > 30U) {
923  av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
924  return AVERROR_INVALIDDATA;
925  }
926  }
927  } else {
928  ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
929  for (j = 1; j < sbr->n_q; j++) {
930  ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
931  if (ch_data->noise_facs_q[i + 1][j] > 30U) {
932  av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
933  return AVERROR_INVALIDDATA;
934  }
935  }
936  }
937  }
938 
939  //assign 0th elements of noise_facs_q from last elements
940  memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
941  sizeof(ch_data->noise_facs_q[0]));
942  return 0;
943 }
944 
946  GetBitContext *gb,
947  int bs_extension_id, int *num_bits_left)
948 {
949  switch (bs_extension_id) {
950  case EXTENSION_ID_PS:
951  if (!ac->oc[1].m4ac.ps) {
952  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
953  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
954  *num_bits_left = 0;
955  } else {
956  *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps.common, *num_bits_left);
958  }
959  break;
960  default:
961  // some files contain 0-padding
962  if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
963  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
964  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
965  *num_bits_left = 0;
966  break;
967  }
968 }
969 
972  GetBitContext *gb)
973 {
974  int ret;
975 
976  if (get_bits1(gb)) // bs_data_extra
977  skip_bits(gb, 4); // bs_reserved
978 
979  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
980  return -1;
981  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
982  read_sbr_invf(sbr, gb, &sbr->data[0]);
983  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
984  return ret;
985  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
986  return ret;
987 
988  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
989  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
990 
991  return 0;
992 }
993 
996  GetBitContext *gb)
997 {
998  int ret;
999 
1000  if (get_bits1(gb)) // bs_data_extra
1001  skip_bits(gb, 8); // bs_reserved
1002 
1003  if ((sbr->bs_coupling = get_bits1(gb))) {
1004  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
1005  return -1;
1006  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
1007  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1008  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1009  read_sbr_invf(sbr, gb, &sbr->data[0]);
1010  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1011  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1012  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1013  return ret;
1014  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1015  return ret;
1016  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1017  return ret;
1018  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1019  return ret;
1020  } else {
1021  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1022  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1023  return -1;
1024  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1025  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1026  read_sbr_invf(sbr, gb, &sbr->data[0]);
1027  read_sbr_invf(sbr, gb, &sbr->data[1]);
1028  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1029  return ret;
1030  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1031  return ret;
1032  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1033  return ret;
1034  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1035  return ret;
1036  }
1037 
1038  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1039  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1040  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1041  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1042 
1043  return 0;
1044 }
1045 
1046 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1047  GetBitContext *gb, int id_aac)
1048 {
1049  unsigned int cnt = get_bits_count(gb);
1050 
1051  sbr->id_aac = id_aac;
1052  sbr->ready_for_dequant = 1;
1053 
1054  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1055  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1056  sbr_turnoff(sbr);
1057  return get_bits_count(gb) - cnt;
1058  }
1059  } else if (id_aac == TYPE_CPE) {
1060  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1061  sbr_turnoff(sbr);
1062  return get_bits_count(gb) - cnt;
1063  }
1064  } else {
1065  av_log(ac->avctx, AV_LOG_ERROR,
1066  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1067  sbr_turnoff(sbr);
1068  return get_bits_count(gb) - cnt;
1069  }
1070  if (get_bits1(gb)) { // bs_extended_data
1071  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1072  if (num_bits_left == 15)
1073  num_bits_left += get_bits(gb, 8); // bs_esc_count
1074 
1075  num_bits_left <<= 3;
1076  while (num_bits_left > 7) {
1077  num_bits_left -= 2;
1078  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1079  }
1080  if (num_bits_left < 0) {
1081  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1082  }
1083  if (num_bits_left > 0)
1084  skip_bits(gb, num_bits_left);
1085  }
1086 
1087  return get_bits_count(gb) - cnt;
1088 }
1089 
1091 {
1092  int err;
1093  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1094  if (err >= 0)
1095  err = sbr_make_f_derived(ac, sbr);
1096  if (err < 0) {
1097  av_log(ac->avctx, AV_LOG_ERROR,
1098  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1099  sbr_turnoff(sbr);
1100  }
1101 }
1102 
1103 /**
1104  * Decode Spectral Band Replication extension data; reference: table 4.55.
1105  *
1106  * @param crc flag indicating the presence of CRC checksum
1107  * @param cnt length of TYPE_FIL syntactic element in bytes
1108  *
1109  * @return Returns number of bytes consumed from the TYPE_FIL element.
1110  */
1112  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1113 {
1114  unsigned int num_sbr_bits = 0, num_align_bits;
1115  unsigned bytes_read;
1116  GetBitContext gbc = *gb_host, *gb = &gbc;
1117  skip_bits_long(gb_host, cnt*8 - 4);
1118 
1119  sbr->reset = 0;
1120 
1121  if (!sbr->sample_rate)
1122  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1123  if (!ac->oc[1].m4ac.ext_sample_rate)
1124  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1125 
1126  if (crc) {
1127  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1128  num_sbr_bits += 10;
1129  }
1130 
1131  //Save some state from the previous frame.
1132  sbr->kx[0] = sbr->kx[1];
1133  sbr->m[0] = sbr->m[1];
1134  sbr->kx_and_m_pushed = 1;
1135 
1136  num_sbr_bits++;
1137  if (get_bits1(gb)) // bs_header_flag
1138  num_sbr_bits += read_sbr_header(sbr, gb);
1139 
1140  if (sbr->reset)
1141  sbr_reset(ac, sbr);
1142 
1143  if (sbr->start)
1144  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1145 
1146  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1147  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1148 
1149  if (bytes_read > cnt) {
1150  av_log(ac->avctx, AV_LOG_ERROR,
1151  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1152  sbr_turnoff(sbr);
1153  }
1154  return cnt;
1155 }
1156 
1157 /**
1158  * Analysis QMF Bank (14496-3 sp04 p206)
1159  *
1160  * @param x pointer to the beginning of the first sample window
1161  * @param W array of complex-valued samples split into subbands
1162  */
1163 #ifndef sbr_qmf_analysis
1164 #if USE_FIXED
1165 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1166 #else
1168 #endif /* USE_FIXED */
1169  SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1170  INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1171 {
1172  int i;
1173 #if USE_FIXED
1174  int j;
1175 #endif
1176  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1177  memcpy(x+288, in, 1024*sizeof(x[0]));
1178  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1179  // are not supported
1180  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1181  sbrdsp->sum64x5(z);
1182  sbrdsp->qmf_pre_shuffle(z);
1183 #if USE_FIXED
1184  for (j = 64; j < 128; j++) {
1185  if (z[j] > 1<<24) {
1187  "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1188  z[j], 1<<24);
1189  z[j] = 1<<24;
1190  } else if (z[j] < -(1<<24)) {
1192  "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1193  z[j], -(1<<24));
1194  z[j] = -(1<<24);
1195  }
1196  }
1197 #endif
1198  mdct->imdct_half(mdct, z, z+64);
1199  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1200  x += 32;
1201  }
1202 }
1203 #endif
1204 
1205 /**
1206  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1207  * (14496-3 sp04 p206)
1208  */
1209 #ifndef sbr_qmf_synthesis
1210 static void sbr_qmf_synthesis(FFTContext *mdct,
1211 #if USE_FIXED
1212  SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1213 #else
1214  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1215 #endif /* USE_FIXED */
1216  INTFLOAT *out, INTFLOAT X[2][38][64],
1217  INTFLOAT mdct_buf[2][64],
1218  INTFLOAT *v0, int *v_off, const unsigned int div)
1219 {
1220  int i, n;
1221  const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1222  const int step = 128 >> div;
1223  INTFLOAT *v;
1224  for (i = 0; i < 32; i++) {
1225  if (*v_off < step) {
1226  int saved_samples = (1280 - 128) >> div;
1227  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1228  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1229  } else {
1230  *v_off -= step;
1231  }
1232  v = v0 + *v_off;
1233  if (div) {
1234  for (n = 0; n < 32; n++) {
1235  X[0][i][ n] = -X[0][i][n];
1236  X[0][i][32+n] = X[1][i][31-n];
1237  }
1238  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1239  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1240  } else {
1241  sbrdsp->neg_odd_64(X[1][i]);
1242  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1243  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1244  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1245  }
1246  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1247  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1248  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1249  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1250  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1251  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1252  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1253  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1254  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1255  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1256  out += 64 >> div;
1257  }
1258 }
1259 #endif
1260 
1261 /// Generate the subband filtered lowband
1263  INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1264  int buf_idx)
1265 {
1266  int i, k;
1267  const int t_HFGen = 8;
1268  const int i_f = 32;
1269  memset(X_low, 0, 32*sizeof(*X_low));
1270  for (k = 0; k < sbr->kx[1]; k++) {
1271  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1272  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1273  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1274  }
1275  }
1276  buf_idx = 1-buf_idx;
1277  for (k = 0; k < sbr->kx[0]; k++) {
1278  for (i = 0; i < t_HFGen; i++) {
1279  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1280  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1281  }
1282  }
1283  return 0;
1284 }
1285 
1286 /// High Frequency Generator (14496-3 sp04 p215)
1288  INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1289  const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1290  const INTFLOAT bw_array[5], const uint8_t *t_env,
1291  int bs_num_env)
1292 {
1293  int j, x;
1294  int g = 0;
1295  int k = sbr->kx[1];
1296  for (j = 0; j < sbr->num_patches; j++) {
1297  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1298  const int p = sbr->patch_start_subband[j] + x;
1299  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1300  g++;
1301  g--;
1302 
1303  if (g < 0) {
1304  av_log(ac->avctx, AV_LOG_ERROR,
1305  "ERROR : no subband found for frequency %d\n", k);
1306  return -1;
1307  }
1308 
1309  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1310  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1311  alpha0[p], alpha1[p], bw_array[g],
1312  2 * t_env[0], 2 * t_env[bs_num_env]);
1313  }
1314  }
1315  if (k < sbr->m[1] + sbr->kx[1])
1316  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1317 
1318  return 0;
1319 }
1320 
1321 /// Generate the subband filtered lowband
1322 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1323  const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1324  const INTFLOAT X_low[32][40][2], int ch)
1325 {
1326  int k, i;
1327  const int i_f = 32;
1328  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1329  memset(X, 0, 2*sizeof(*X));
1330  for (k = 0; k < sbr->kx[0]; k++) {
1331  for (i = 0; i < i_Temp; i++) {
1332  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1333  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1334  }
1335  }
1336  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1337  for (i = 0; i < i_Temp; i++) {
1338  X[0][i][k] = Y0[i + i_f][k][0];
1339  X[1][i][k] = Y0[i + i_f][k][1];
1340  }
1341  }
1342 
1343  for (k = 0; k < sbr->kx[1]; k++) {
1344  for (i = i_Temp; i < 38; i++) {
1345  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1346  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1347  }
1348  }
1349  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1350  for (i = i_Temp; i < i_f; i++) {
1351  X[0][i][k] = Y1[i][k][0];
1352  X[1][i][k] = Y1[i][k][1];
1353  }
1354  }
1355  return 0;
1356 }
1357 
1358 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1359  * (14496-3 sp04 p217)
1360  */
1362  SBRData *ch_data, int e_a[2])
1363 {
1364  int e, i, m;
1365 
1366  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1367  for (e = 0; e < ch_data->bs_num_env; e++) {
1368  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1369  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1370  int k;
1371 
1372  if (sbr->kx[1] != table[0]) {
1373  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1374  "Derived frequency tables were not regenerated.\n");
1375  sbr_turnoff(sbr);
1376  return AVERROR_BUG;
1377  }
1378  for (i = 0; i < ilim; i++)
1379  for (m = table[i]; m < table[i + 1]; m++)
1380  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1381 
1382  // ch_data->bs_num_noise > 1 => 2 noise floors
1383  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1384  for (i = 0; i < sbr->n_q; i++)
1385  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1386  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1387 
1388  for (i = 0; i < sbr->n[1]; i++) {
1389  if (ch_data->bs_add_harmonic_flag) {
1390  const unsigned int m_midpoint =
1391  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1392 
1393  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1394  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1395  }
1396  }
1397 
1398  for (i = 0; i < ilim; i++) {
1399  int additional_sinusoid_present = 0;
1400  for (m = table[i]; m < table[i + 1]; m++) {
1401  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1402  additional_sinusoid_present = 1;
1403  break;
1404  }
1405  }
1406  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1407  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1408  }
1409  }
1410 
1411  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1412  return 0;
1413 }
1414 
1415 /// Estimation of current envelope (14496-3 sp04 p218)
1416 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1417  SpectralBandReplication *sbr, SBRData *ch_data)
1418 {
1419  int e, m;
1420  int kx1 = sbr->kx[1];
1421 
1422  if (sbr->bs_interpol_freq) {
1423  for (e = 0; e < ch_data->bs_num_env; e++) {
1424 #if USE_FIXED
1425  const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1426 #else
1427  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1428 #endif /* USE_FIXED */
1429  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1430  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1431 
1432  for (m = 0; m < sbr->m[1]; m++) {
1433  AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1434 #if USE_FIXED
1435  e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1436 #else
1437  e_curr[e][m] = sum * recip_env_size;
1438 #endif /* USE_FIXED */
1439  }
1440  }
1441  } else {
1442  int k, p;
1443 
1444  for (e = 0; e < ch_data->bs_num_env; e++) {
1445  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1446  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1447  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1448  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1449 
1450  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1451 #if USE_FIXED
1452  SoftFloat sum = FLOAT_0;
1453  const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1454  for (k = table[p]; k < table[p + 1]; k++) {
1455  sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1456  }
1457  sum = av_mul_sf(sum, den);
1458 #else
1459  float sum = 0.0f;
1460  const int den = env_size * (table[p + 1] - table[p]);
1461 
1462  for (k = table[p]; k < table[p + 1]; k++) {
1463  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1464  }
1465  sum /= den;
1466 #endif /* USE_FIXED */
1467  for (k = table[p]; k < table[p + 1]; k++) {
1468  e_curr[e][k - kx1] = sum;
1469  }
1470  }
1471  }
1472  }
1473 }
1474 
1476  INTFLOAT* L, INTFLOAT* R)
1477 {
1478  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1479  int ch;
1480  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1481  int err;
1482 
1483  if (id_aac != sbr->id_aac) {
1484  av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1485  "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1486  sbr_turnoff(sbr);
1487  }
1488 
1489  if (sbr->start && !sbr->ready_for_dequant) {
1490  av_log(ac->avctx, AV_LOG_ERROR,
1491  "No quantized data read for sbr_dequant.\n");
1492  sbr_turnoff(sbr);
1493  }
1494 
1495  if (!sbr->kx_and_m_pushed) {
1496  sbr->kx[0] = sbr->kx[1];
1497  sbr->m[0] = sbr->m[1];
1498  } else {
1499  sbr->kx_and_m_pushed = 0;
1500  }
1501 
1502  if (sbr->start) {
1503  sbr_dequant(sbr, id_aac);
1504  sbr->ready_for_dequant = 0;
1505  }
1506  for (ch = 0; ch < nch; ch++) {
1507  /* decode channel */
1508  sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1509  (INTFLOAT*)sbr->qmf_filter_scratch,
1510  sbr->data[ch].W, sbr->data[ch].Ypos);
1511  sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1512  (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1513  sbr->data[ch].Ypos);
1514  sbr->data[ch].Ypos ^= 1;
1515  if (sbr->start) {
1516  sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1517  (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1518  sbr_chirp(sbr, &sbr->data[ch]);
1519  av_assert0(sbr->data[ch].bs_num_env > 0);
1520  sbr_hf_gen(ac, sbr, sbr->X_high,
1521  (const INTFLOAT (*)[40][2]) sbr->X_low,
1522  (const INTFLOAT (*)[2]) sbr->alpha0,
1523  (const INTFLOAT (*)[2]) sbr->alpha1,
1524  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1525  sbr->data[ch].bs_num_env);
1526 
1527  // hf_adj
1528  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1529  if (!err) {
1530  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1531  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1532  sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1533  (const INTFLOAT (*)[40][2]) sbr->X_high,
1534  sbr, &sbr->data[ch],
1535  sbr->data[ch].e_a);
1536  }
1537  }
1538 
1539  /* synthesis */
1540  sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1541  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1542  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1543  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1544  }
1545 
1546  if (ac->oc[1].m4ac.ps == 1) {
1547  if (sbr->ps.common.start) {
1548  AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1549  } else {
1550  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1551  }
1552  nch = 2;
1553  }
1554 
1555  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1556  L, sbr->X[0], sbr->qmf_filter_scratch,
1557  sbr->data[0].synthesis_filterbank_samples,
1558  &sbr->data[0].synthesis_filterbank_samples_offset,
1559  downsampled);
1560  if (nch == 2)
1561  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1562  R, sbr->X[1], sbr->qmf_filter_scratch,
1563  sbr->data[1].synthesis_filterbank_samples,
1564  &sbr->data[1].synthesis_filterbank_samples_offset,
1565  downsampled);
1566 }
1567 
1569 {
1570  c->sbr_lf_gen = sbr_lf_gen;
1571  c->sbr_hf_assemble = sbr_hf_assemble;
1572  c->sbr_x_gen = sbr_x_gen;
1573  c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
1574 
1575 #if !USE_FIXED
1576  if(ARCH_MIPS)
1578 #endif
1579 }
@ TYPE_CCE
Definition: aac.h:59
@ TYPE_CPE
Definition: aac.h:58
@ TYPE_SCE
Definition: aac.h:57
@ TYPE_LFE
Definition: aac.h:60
#define AAC_RENAME(x)
Definition: aac_defines.h:85
float INTFLOAT
Definition: aac_defines.h:88
float AAC_FLOAT
Definition: aac_defines.h:92
#define USE_FIXED
Definition: aac_defines.h:25
#define Q23(x)
Definition: aac_defines.h:96
#define AAC_RENAME_32(x)
Definition: aac_defines.h:86
av_cold void AAC_RENAME() ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:745
av_cold void AAC_RENAME() ff_ps_init(void)
Definition: aacps.c:740
int AAC_RENAME() ff_ps_apply(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
Definition: aacps.c:719
int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb, PSCommonContext *ps, int bits_left)
Definition: aacps_common.c:123
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
Definition: aacsbr.c:219
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
Definition: aacsbr.c:276
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
Definition: aacsbr.c:140
static VLC vlc_sbr[10]
Definition: aacsbr.c:51
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
Definition: aacsbr.c:54
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
Definition: aacsbr.c:73
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
Definition: aacsbr.c:195
#define SBR_VLC_ROW(name)
Definition: aacsbr.h:78
static const int8_t vlc_sbr_lav[10]
Definition: aacsbr.h:69
@ F_HUFFMAN_ENV_1_5DB
Definition: aacsbr.h:44
@ F_HUFFMAN_ENV_BAL_3_0DB
Definition: aacsbr.h:50
@ T_HUFFMAN_NOISE_3_0DB
Definition: aacsbr.h:51
@ T_HUFFMAN_ENV_BAL_1_5DB
Definition: aacsbr.h:45
@ F_HUFFMAN_ENV_3_0DB
Definition: aacsbr.h:48
@ T_HUFFMAN_NOISE_BAL_3_0DB
Definition: aacsbr.h:52
@ T_HUFFMAN_ENV_1_5DB
Definition: aacsbr.h:43
@ T_HUFFMAN_ENV_3_0DB
Definition: aacsbr.h:47
@ F_HUFFMAN_ENV_BAL_1_5DB
Definition: aacsbr.h:46
@ T_HUFFMAN_ENV_BAL_3_0DB
Definition: aacsbr.h:49
#define ENVELOPE_ADJUSTMENT_OFFSET
Definition: aacsbr.h:36
void ff_aacsbr_func_ptr_init_mips(AACSBRContext *c)
Definition: aacsbr_mips.c:612
#define SBR_INIT_VLC_STATIC(num, size)
Definition: aacsbr.h:72
@ VARVAR
Definition: aacsbr.h:62
@ VARFIX
Definition: aacsbr.h:61
@ FIXVAR
Definition: aacsbr.h:60
@ FIXFIX
Definition: aacsbr.h:59
@ EXTENSION_ID_PS
Definition: aacsbr.h:66
static int fixed_log(int x)
Definition: aacsbr_fixed.c:86
static const int CONST_076923
Definition: aacsbr_fixed.c:78
static const int CONST_RECIP_LN2
Definition: aacsbr_fixed.c:77
static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
av_cold void AAC_RENAME() ff_aac_sbr_init(void)
Initialize SBR.
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int bs_extension_id, int *num_bits_left)
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read how the envelope and noise floor data is delta coded.
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
static int read_sbr_single_channel_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2], const INTFLOAT(*alpha0)[2], const INTFLOAT(*alpha1)[2], const INTFLOAT bw_array[5], const uint8_t *t_env, int bs_num_env)
High Frequency Generator (14496-3 sp04 p215)
static av_cold void aacsbr_tableinit(void)
static void sbr_qmf_synthesis(FFTContext *mdct, SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp, INTFLOAT *out, INTFLOAT X[2][38][64], INTFLOAT mdct_buf[2][64], INTFLOAT *v0, int *v_off, const unsigned int div)
Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank (14496-3 sp04 p206)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, SpectrumParameters *spectrum)
Master Frequency Band Table (14496-3 sp04 p194)
static int read_sbr_channel_pair_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
void AAC_RENAME() ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, INTFLOAT *L, INTFLOAT *R)
Apply one SBR element to one AAC element.
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Generate the subband filtered lowband.
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, int elements)
static const int8_t ceil_log2[]
ceil(log2(index+1))
static int in_table_int16(const int16_t *table, int last_el, int16_t needle)
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
Derived Frequency Band Tables (14496-3 sp04 p197)
static int array_min_int16(const int16_t *array, int nel)
static void aacsbr_func_ptr_init(AACSBRContext *c)
static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
static void sbr_turnoff(SpectralBandReplication *sbr)
Places SBR in pure upsampling mode.
static void copy_sbr_grid(SBRData *dst, const SBRData *src)
static void sbr_env_estimate(AAC_FLOAT(*e_curr)[48], INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data)
Estimation of current envelope (14496-3 sp04 p218)
av_cold void AAC_RENAME() ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Generate the subband filtered lowband.
static int qsort_comparison_function_int16(const void *a, const void *b)
int AAC_RENAME() ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb_host, int crc, int cnt, int id_aac)
Decode Spectral Band Replication extension data; reference: table 4.55.
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int id_aac)
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
av_cold void AAC_RENAME() ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
Initialize one SBR context.
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x, INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
Analysis QMF Bank (14496-3 sp04 p206)
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
Limiter Frequency Band Table (14496-3 sp04 p198)
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, int e_a[2])
High Frequency Adjustment (14496-3 sp04 p217) and Mapping (14496-3 sp04 p217)
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read inverse filtering data.
static const int8_t sbr_offset[6][16]
Definition: aacsbrdata.h:261
static INTFLOAT sbr_qmf_window_ds[320]
Definition: aacsbrdata.h:536
static const INTFLOAT sbr_qmf_window_us[640]
Definition: aacsbrdata.h:539
#define L(x)
Definition: vp56_arith.h:36
#define av_always_inline
Definition: attributes.h:45
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
uint8_t
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
#define FF_PROFILE_AAC_HE_V2
Definition: avcodec.h:1867
#define FFMIN(a, b)
Definition: common.h:105
#define FFMAX(a, b)
Definition: common.h:103
#define ARCH_MIPS
Definition: config.h:27
#define NULL
Definition: coverity.c:32
int
#define ff_mdct_init
Definition: fft.h:161
#define ff_mdct_end
Definition: fft.h:162
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:467
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:446
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:210
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
#define R
Definition: huffyuvdsp.h:34
int i
Definition: input.c:407
#define log2f(x)
Definition: libm.h:409
#define lrintf(x)
Definition: libm_mips.h:70
static const uint16_t table[]
Definition: prosumer.c:206
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
#define v0
Definition: regdef.h:26
typedef void(RENAME(mix_any_func_type))
#define SBR_SYNTHESIS_BUF_SIZE
Definition: sbr.h:60
void AAC_RENAME() ff_sbrdsp_init(SBRDSPContext *s)
static const ElemCat * elements[ELEMENT_COUNT]
Definition: signature.h:566
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:162
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:102
static const SoftFloat FLOAT_0
0.0
Definition: softfloat.h:39
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
Definition: softfloat.h:185
main AAC context
Definition: aac.h:294
AVCodecContext * avctx
Definition: aac.h:296
OutputConfiguration oc[2]
Definition: aac.h:357
aacsbr functions pointers
Definition: sbr.h:123
main external API structure.
Definition: avcodec.h:536
int profile
profile
Definition: avcodec.h:1858
void(* vector_fmul_add)(int *dst, const int *src0, const int *src1, const int *src2, int len)
Calculate the entry wise product of two vectors of integers, add a third vector of integers and store...
Definition: fixed_dsp.h:132
void(* vector_fmul)(int *dst, const int *src0, const int *src1, int len)
Fixed-point multiplication that calculates the entry wise product of two vectors of integers and stor...
Definition: fixed_dsp.h:113
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:154
Definition: fft.h:83
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:103
int ps
-1 implicit, 1 presence
Definition: mpeg4audio.h:44
MPEG4AudioConfig m4ac
Definition: aac.h:125
PSCommonContext common
Definition: aacps.h:73
AAC_FLOAT(* sum_square)(INTFLOAT(*x)[2], int n)
Definition: sbrdsp.h:30
void(* hf_gen)(INTFLOAT(*X_high)[2], const INTFLOAT(*X_low)[2], const INTFLOAT alpha0[2], const INTFLOAT alpha1[2], INTFLOAT bw, int start, int end)
Definition: sbrdsp.h:37
Spectral Band Replication per channel data.
Definition: sbr.h:65
AAC_FLOAT env_facs[6][48]
Definition: sbr.h:103
uint8_t t_q[3]
Noise time borders.
Definition: sbr.h:112
AAC_SIGNE bs_num_env
Definition: sbr.h:72
uint8_t s_indexmapped[8][48]
Definition: sbr.h:100
unsigned bs_amp_res
Definition: sbr.h:79
unsigned bs_add_harmonic_flag
Definition: sbr.h:71
uint8_t noise_facs_q[3][5]
Noise scalefactors.
Definition: sbr.h:105
AAC_SIGNE bs_num_noise
Definition: sbr.h:74
int e_a[2]
l_APrev and l_A
Definition: sbr.h:90
unsigned f_indexnoise
Definition: sbr.h:113
unsigned bs_frame_class
Definition: sbr.h:70
uint8_t bs_df_noise[2]
Definition: sbr.h:76
uint8_t t_env[8]
Envelope time borders.
Definition: sbr.h:108
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
Definition: sbr.h:110
uint8_t bs_invf_mode[2][5]
Definition: sbr.h:77
AAC_FLOAT noise_facs[3][5]
Definition: sbr.h:106
uint8_t bs_df_env[5]
Definition: sbr.h:75
uint8_t env_facs_q[6][48]
Envelope scalefactors.
Definition: sbr.h:102
uint8_t bs_add_harmonic[48]
Definition: sbr.h:78
uint8_t bs_freq_res[7]
Definition: sbr.h:73
Spectral Band Replication.
Definition: sbr.h:142
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
Definition: sbr.h:182
uint8_t patch_num_subbands[6]
Definition: sbr.h:188
SpectrumParameters spectrum_params
Definition: sbr.h:148
unsigned bs_interpol_freq
Definition: sbr.h:156
AAC_SIGNE m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
Definition: sbr.h:165
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
Definition: sbr.h:205
unsigned bs_limiter_bands
Definition: sbr.h:154
unsigned bs_coupling
Definition: sbr.h:159
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
Definition: sbr.h:203
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
Definition: sbr.h:184
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
Definition: sbr.h:201
PSContext ps
Definition: sbr.h:170
unsigned bs_smoothing_mode
Definition: sbr.h:157
unsigned bs_limiter_gains
Definition: sbr.h:155
AAC_SIGNE kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
Definition: sbr.h:163
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
Definition: sbr.h:180
AAC_SIGNE n_q
Number of noise floor bands.
Definition: sbr.h:174
AAC_SIGNE k[5]
k0, k1, k2
Definition: sbr.h:160
AAC_SIGNE n_lim
Number of limiter bands.
Definition: sbr.h:176
uint16_t f_tablelim[30]
Frequency borders for the limiter.
Definition: sbr.h:186
AAC_SIGNE n_master
The number of frequency bands in f_master.
Definition: sbr.h:168
AAC_SIGNE num_patches
Definition: sbr.h:187
unsigned kx_and_m_pushed
Definition: sbr.h:166
uint8_t patch_start_subband[6]
Definition: sbr.h:189
uint16_t f_master[49]
The master QMF frequency grouping.
Definition: sbr.h:178
SBRData data[2]
Definition: sbr.h:169
SBRDSPContext dsp
Definition: sbr.h:216
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
Definition: sbr.h:172
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
Definition: sbr.h:45
uint8_t bs_noise_bands
Definition: sbr.h:56
uint8_t bs_stop_freq
Definition: sbr.h:47
uint8_t bs_alter_scale
Definition: sbr.h:55
uint8_t bs_start_freq
Definition: sbr.h:46
uint8_t bs_xover_band
Definition: sbr.h:48
uint8_t bs_freq_scale
Definition: sbr.h:54
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
#define avpriv_request_sample(...)
#define av_log(a,...)
static uint8_t tmp[11]
Definition: aes_ctr.c:27
#define src
Definition: vp8dsp.c:255
static int array[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:106
FILE * out
Definition: movenc.c:54
@ X
Definition: vf_addroi.c:26
@ W
Definition: vf_addroi.c:26
const char * b
Definition: vf_curves.c:118
const char * g
Definition: vf_curves.c:117
else temp
Definition: vf_mcdeint.c:259
if(ret< 0)
Definition: vf_mcdeint.c:282
#define VLC_TYPE
Definition: vlc.h:24
float delta
float min
uint8_t bits
Definition: vp3data.h:141
static double c[64]