FFmpeg  4.4
rv34.c
Go to the documentation of this file.
1 /*
2  * RV30/40 decoder common data
3  * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * RV30/40 decoder common data
25  */
26 
27 #include "libavutil/avassert.h"
28 #include "libavutil/imgutils.h"
29 #include "libavutil/internal.h"
30 #include "libavutil/mem_internal.h"
31 #include "libavutil/thread.h"
33 
34 #include "avcodec.h"
35 #include "error_resilience.h"
36 #include "mpegutils.h"
37 #include "mpegvideo.h"
38 #include "golomb.h"
39 #include "internal.h"
40 #include "mathops.h"
41 #include "mpeg_er.h"
42 #include "qpeldsp.h"
43 #include "rectangle.h"
44 #include "thread.h"
45 
46 #include "rv34vlc.h"
47 #include "rv34data.h"
48 #include "rv34.h"
49 
50 static inline void ZERO8x2(void* dst, int stride)
51 {
52  fill_rectangle(dst, 1, 2, stride, 0, 4);
53  fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
54 }
55 
56 /** translation of RV30/40 macroblock types to lavc ones */
57 static const int rv34_mb_type_to_lavc[12] = {
70 };
71 
72 
74 
75 static int rv34_decode_mv(RV34DecContext *r, int block_type);
76 
77 /**
78  * @name RV30/40 VLC generating functions
79  * @{
80  */
81 
82 static VLC_TYPE table_data[117592][2];
83 
84 /**
85  * Generate VLC from codeword lengths.
86  * @param bits codeword lengths (zeroes are accepted)
87  * @param size length of input data
88  * @param vlc output VLC
89  * @param insyms symbols for input codes (NULL for default ones)
90  * @param num VLC table number (for static initialization)
91  */
92 static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *syms,
93  int *offset)
94 {
95  int counts[17] = {0}, codes[17];
96  uint16_t cw[MAX_VLC_SIZE];
97  int maxbits;
98 
99  for (int i = 0; i < size; i++)
100  counts[bits[i]]++;
101 
102  /* bits[0] is zero for some tables, i.e. syms actually starts at 1.
103  * So we reset it here. The code assigned to this element is 0x00. */
104  codes[0] = counts[0] = 0;
105  for (int i = 0; i < 16; i++) {
106  codes[i+1] = (codes[i] + counts[i]) << 1;
107  if (counts[i])
108  maxbits = i;
109  }
110  for (int i = 0; i < size; i++)
111  cw[i] = codes[bits[i]]++;
112 
113  vlc->table = &table_data[*offset];
115  ff_init_vlc_sparse(vlc, FFMIN(maxbits, 9), size,
116  bits, 1, 1,
117  cw, 2, 2,
118  syms, !!syms, !!syms, INIT_VLC_STATIC_OVERLONG);
119  *offset += vlc->table_size;
120 }
121 
122 /**
123  * Initialize all tables.
124  */
125 static av_cold void rv34_init_tables(void)
126 {
127  int i, j, k, offset = 0;
128 
129  for(i = 0; i < NUM_INTRA_TABLES; i++){
130  for(j = 0; j < 2; j++){
132  &intra_vlcs[i].cbppattern[j], NULL, &offset);
134  &intra_vlcs[i].second_pattern[j], NULL, &offset);
136  &intra_vlcs[i].third_pattern[j], NULL, &offset);
137  for(k = 0; k < 4; k++){
139  &intra_vlcs[i].cbp[j][k], rv34_cbp_code, &offset);
140  }
141  }
142  for(j = 0; j < 4; j++){
144  &intra_vlcs[i].first_pattern[j], NULL, &offset);
145  }
147  &intra_vlcs[i].coefficient, NULL, &offset);
148  }
149 
150  for(i = 0; i < NUM_INTER_TABLES; i++){
152  &inter_vlcs[i].cbppattern[0], NULL, &offset);
153  for(j = 0; j < 4; j++){
155  &inter_vlcs[i].cbp[0][j], rv34_cbp_code, &offset);
156  }
157  for(j = 0; j < 2; j++){
159  &inter_vlcs[i].first_pattern[j], NULL, &offset);
161  &inter_vlcs[i].second_pattern[j], NULL, &offset);
163  &inter_vlcs[i].third_pattern[j], NULL, &offset);
164  }
166  &inter_vlcs[i].coefficient, NULL, &offset);
167  }
168 }
169 
170 /** @} */ // vlc group
171 
172 /**
173  * @name RV30/40 4x4 block decoding functions
174  * @{
175  */
176 
177 /**
178  * Decode coded block pattern.
179  */
180 static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
181 {
182  int pattern, code, cbp=0;
183  int ones;
184  static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
185  static const int shifts[4] = { 0, 2, 8, 10 };
186  const int *curshift = shifts;
187  int i, t, mask;
188 
189  code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
190  pattern = code & 0xF;
191  code >>= 4;
192 
193  ones = rv34_count_ones[pattern];
194 
195  for(mask = 8; mask; mask >>= 1, curshift++){
196  if(pattern & mask)
197  cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
198  }
199 
200  for(i = 0; i < 4; i++){
201  t = (modulo_three_table[code] >> (6 - 2*i)) & 3;
202  if(t == 1)
203  cbp |= cbp_masks[get_bits1(gb)] << i;
204  if(t == 2)
205  cbp |= cbp_masks[2] << i;
206  }
207  return cbp;
208 }
209 
210 /**
211  * Get one coefficient value from the bitstream and store it.
212  */
213 static inline void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC* vlc, int q)
214 {
215  if(coef){
216  if(coef == esc){
217  coef = get_vlc2(gb, vlc->table, 9, 2);
218  if(coef > 23){
219  coef -= 23;
220  coef = 22 + ((1 << coef) | get_bits(gb, coef));
221  }
222  coef += esc;
223  }
224  if(get_bits1(gb))
225  coef = -coef;
226  *dst = (coef*q + 8) >> 4;
227  }
228 }
229 
230 /**
231  * Decode 2x2 subblock of coefficients.
232  */
233 static inline void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
234 {
236 
237  decode_coeff( dst+0*4+0, (flags >> 6) , 3, gb, vlc, q);
238  if(is_block2){
239  decode_coeff(dst+1*4+0, (flags >> 4) & 3, 2, gb, vlc, q);
240  decode_coeff(dst+0*4+1, (flags >> 2) & 3, 2, gb, vlc, q);
241  }else{
242  decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q);
243  decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q);
244  }
245  decode_coeff( dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q);
246 }
247 
248 /**
249  * Decode a single coefficient.
250  */
251 static inline void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
252 {
253  int coeff = modulo_three_table[code] >> 6;
254  decode_coeff(dst, coeff, 3, gb, vlc, q);
255 }
256 
257 static inline void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc,
258  int q_dc, int q_ac1, int q_ac2)
259 {
261 
262  decode_coeff(dst+0*4+0, (flags >> 6) , 3, gb, vlc, q_dc);
263  decode_coeff(dst+0*4+1, (flags >> 4) & 3, 2, gb, vlc, q_ac1);
264  decode_coeff(dst+1*4+0, (flags >> 2) & 3, 2, gb, vlc, q_ac1);
265  decode_coeff(dst+1*4+1, (flags >> 0) & 3, 2, gb, vlc, q_ac2);
266 }
267 
268 /**
269  * Decode coefficients for 4x4 block.
270  *
271  * This is done by filling 2x2 subblocks with decoded coefficients
272  * in this order (the same for subblocks and subblock coefficients):
273  * o--o
274  * /
275  * /
276  * o--o
277  */
278 
279 static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
280 {
281  int code, pattern, has_ac = 1;
282 
283  code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
284 
285  pattern = code & 0x7;
286 
287  code >>= 3;
288 
289  if (modulo_three_table[code] & 0x3F) {
290  decode_subblock3(dst, code, gb, &rvlc->coefficient, q_dc, q_ac1, q_ac2);
291  } else {
292  decode_subblock1(dst, code, gb, &rvlc->coefficient, q_dc);
293  if (!pattern)
294  return 0;
295  has_ac = 0;
296  }
297 
298  if(pattern & 4){
299  code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
300  decode_subblock(dst + 4*0+2, code, 0, gb, &rvlc->coefficient, q_ac2);
301  }
302  if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
303  code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
304  decode_subblock(dst + 4*2+0, code, 1, gb, &rvlc->coefficient, q_ac2);
305  }
306  if(pattern & 1){
307  code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
308  decode_subblock(dst + 4*2+2, code, 0, gb, &rvlc->coefficient, q_ac2);
309  }
310  return has_ac | pattern;
311 }
312 
313 /**
314  * @name RV30/40 bitstream parsing
315  * @{
316  */
317 
318 /**
319  * Decode starting slice position.
320  * @todo Maybe replace with ff_h263_decode_mba() ?
321  */
323 {
324  int i;
325  for(i = 0; i < 5; i++)
326  if(rv34_mb_max_sizes[i] >= mb_size - 1)
327  break;
328  return rv34_mb_bits_sizes[i];
329 }
330 
331 /**
332  * Select VLC set for decoding from current quantizer, modifier and frame type.
333  */
334 static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
335 {
336  if(mod == 2 && quant < 19) quant += 10;
337  else if(mod && quant < 26) quant += 5;
338  av_assert2(quant >= 0 && quant < 32);
341 }
342 
343 /**
344  * Decode intra macroblock header and return CBP in case of success, -1 otherwise.
345  */
346 static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
347 {
348  MpegEncContext *s = &r->s;
349  GetBitContext *gb = &s->gb;
350  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
351  int t;
352 
353  r->is16 = get_bits1(gb);
354  if(r->is16){
355  s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA16x16;
356  r->block_type = RV34_MB_TYPE_INTRA16x16;
357  t = get_bits(gb, 2);
358  fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
359  r->luma_vlc = 2;
360  }else{
361  if(!r->rv30){
362  if(!get_bits1(gb))
363  av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
364  }
365  s->current_picture_ptr->mb_type[mb_pos] = MB_TYPE_INTRA;
366  r->block_type = RV34_MB_TYPE_INTRA;
367  if(r->decode_intra_types(r, gb, intra_types) < 0)
368  return -1;
369  r->luma_vlc = 1;
370  }
371 
372  r->chroma_vlc = 0;
373  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
374 
375  return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
376 }
377 
378 /**
379  * Decode inter macroblock header and return CBP in case of success, -1 otherwise.
380  */
381 static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
382 {
383  MpegEncContext *s = &r->s;
384  GetBitContext *gb = &s->gb;
385  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
386  int i, t;
387 
388  r->block_type = r->decode_mb_info(r);
389  if(r->block_type == -1)
390  return -1;
391  s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
392  r->mb_type[mb_pos] = r->block_type;
393  if(r->block_type == RV34_MB_SKIP){
394  if(s->pict_type == AV_PICTURE_TYPE_P)
395  r->mb_type[mb_pos] = RV34_MB_P_16x16;
396  if(s->pict_type == AV_PICTURE_TYPE_B)
397  r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
398  }
399  r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
400  if (rv34_decode_mv(r, r->block_type) < 0)
401  return -1;
402  if(r->block_type == RV34_MB_SKIP){
403  fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
404  return 0;
405  }
406  r->chroma_vlc = 1;
407  r->luma_vlc = 0;
408 
409  if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
410  if(r->is16){
411  t = get_bits(gb, 2);
412  fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
413  r->luma_vlc = 2;
414  }else{
415  if(r->decode_intra_types(r, gb, intra_types) < 0)
416  return -1;
417  r->luma_vlc = 1;
418  }
419  r->chroma_vlc = 0;
420  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
421  }else{
422  for(i = 0; i < 16; i++)
423  intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
424  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
425  if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
426  r->is16 = 1;
427  r->chroma_vlc = 1;
428  r->luma_vlc = 2;
429  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
430  }
431  }
432 
433  return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
434 }
435 
436 /** @} */ //bitstream functions
437 
438 /**
439  * @name motion vector related code (prediction, reconstruction, motion compensation)
440  * @{
441  */
442 
443 /** macroblock partition width in 8x8 blocks */
444 static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
445 
446 /** macroblock partition height in 8x8 blocks */
447 static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
448 
449 /** availability index for subblocks */
450 static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
451 
452 /**
453  * motion vector prediction
454  *
455  * Motion prediction performed for the block by using median prediction of
456  * motion vectors from the left, top and right top blocks but in corner cases
457  * some other vectors may be used instead.
458  */
459 static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
460 {
461  MpegEncContext *s = &r->s;
462  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
463  int A[2] = {0}, B[2], C[2];
464  int i, j;
465  int mx, my;
466  int* avail = r->avail_cache + avail_indexes[subblock_no];
467  int c_off = part_sizes_w[block_type];
468 
469  mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
470  if(subblock_no == 3)
471  c_off = -1;
472 
473  if(avail[-1]){
474  A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
475  A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
476  }
477  if(avail[-4]){
478  B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
479  B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
480  }else{
481  B[0] = A[0];
482  B[1] = A[1];
483  }
484  if(!avail[c_off-4]){
485  if(avail[-4] && (avail[-1] || r->rv30)){
486  C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
487  C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
488  }else{
489  C[0] = A[0];
490  C[1] = A[1];
491  }
492  }else{
493  C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
494  C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
495  }
496  mx = mid_pred(A[0], B[0], C[0]);
497  my = mid_pred(A[1], B[1], C[1]);
498  mx += r->dmv[dmv_no][0];
499  my += r->dmv[dmv_no][1];
500  for(j = 0; j < part_sizes_h[block_type]; j++){
501  for(i = 0; i < part_sizes_w[block_type]; i++){
502  s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
503  s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
504  }
505  }
506 }
507 
508 #define GET_PTS_DIFF(a, b) (((a) - (b) + 8192) & 0x1FFF)
509 
510 /**
511  * Calculate motion vector component that should be added for direct blocks.
512  */
513 static int calc_add_mv(RV34DecContext *r, int dir, int val)
514 {
515  int mul = dir ? -r->mv_weight2 : r->mv_weight1;
516 
517  return (int)(val * (SUINT)mul + 0x2000) >> 14;
518 }
519 
520 /**
521  * Predict motion vector for B-frame macroblock.
522  */
523 static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
524  int A_avail, int B_avail, int C_avail,
525  int *mx, int *my)
526 {
527  if(A_avail + B_avail + C_avail != 3){
528  *mx = A[0] + B[0] + C[0];
529  *my = A[1] + B[1] + C[1];
530  if(A_avail + B_avail + C_avail == 2){
531  *mx /= 2;
532  *my /= 2;
533  }
534  }else{
535  *mx = mid_pred(A[0], B[0], C[0]);
536  *my = mid_pred(A[1], B[1], C[1]);
537  }
538 }
539 
540 /**
541  * motion vector prediction for B-frames
542  */
543 static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
544 {
545  MpegEncContext *s = &r->s;
546  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
547  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
548  int A[2] = { 0 }, B[2] = { 0 }, C[2] = { 0 };
549  int has_A = 0, has_B = 0, has_C = 0;
550  int mx, my;
551  int i, j;
552  Picture *cur_pic = s->current_picture_ptr;
553  const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
554  int type = cur_pic->mb_type[mb_pos];
555 
556  if((r->avail_cache[6-1] & type) & mask){
557  A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
558  A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
559  has_A = 1;
560  }
561  if((r->avail_cache[6-4] & type) & mask){
562  B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
563  B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
564  has_B = 1;
565  }
566  if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
567  C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
568  C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
569  has_C = 1;
570  }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
571  C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
572  C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
573  has_C = 1;
574  }
575 
576  rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
577 
578  mx += r->dmv[dir][0];
579  my += r->dmv[dir][1];
580 
581  for(j = 0; j < 2; j++){
582  for(i = 0; i < 2; i++){
583  cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
584  cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
585  }
586  }
587  if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
588  ZERO8x2(cur_pic->motion_val[!dir][mv_pos], s->b8_stride);
589  }
590 }
591 
592 /**
593  * motion vector prediction - RV3 version
594  */
595 static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
596 {
597  MpegEncContext *s = &r->s;
598  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
599  int A[2] = {0}, B[2], C[2];
600  int i, j, k;
601  int mx, my;
602  int* avail = r->avail_cache + avail_indexes[0];
603 
604  if(avail[-1]){
605  A[0] = s->current_picture_ptr->motion_val[0][mv_pos - 1][0];
606  A[1] = s->current_picture_ptr->motion_val[0][mv_pos - 1][1];
607  }
608  if(avail[-4]){
609  B[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][0];
610  B[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride][1];
611  }else{
612  B[0] = A[0];
613  B[1] = A[1];
614  }
615  if(!avail[-4 + 2]){
616  if(avail[-4] && (avail[-1])){
617  C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][0];
618  C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride - 1][1];
619  }else{
620  C[0] = A[0];
621  C[1] = A[1];
622  }
623  }else{
624  C[0] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][0];
625  C[1] = s->current_picture_ptr->motion_val[0][mv_pos - s->b8_stride + 2][1];
626  }
627  mx = mid_pred(A[0], B[0], C[0]);
628  my = mid_pred(A[1], B[1], C[1]);
629  mx += r->dmv[0][0];
630  my += r->dmv[0][1];
631  for(j = 0; j < 2; j++){
632  for(i = 0; i < 2; i++){
633  for(k = 0; k < 2; k++){
634  s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
635  s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
636  }
637  }
638  }
639 }
640 
641 static const int chroma_coeffs[3] = { 0, 3, 5 };
642 
643 /**
644  * generic motion compensation function
645  *
646  * @param r decoder context
647  * @param block_type type of the current block
648  * @param xoff horizontal offset from the start of the current block
649  * @param yoff vertical offset from the start of the current block
650  * @param mv_off offset to the motion vector information
651  * @param width width of the current partition in 8x8 blocks
652  * @param height height of the current partition in 8x8 blocks
653  * @param dir motion compensation direction (i.e. from the last or the next reference frame)
654  * @param thirdpel motion vectors are specified in 1/3 of pixel
655  * @param qpel_mc a set of functions used to perform luma motion compensation
656  * @param chroma_mc a set of functions used to perform chroma motion compensation
657  */
658 static inline void rv34_mc(RV34DecContext *r, const int block_type,
659  const int xoff, const int yoff, int mv_off,
660  const int width, const int height, int dir,
661  const int thirdpel, int weighted,
662  qpel_mc_func (*qpel_mc)[16],
664 {
665  MpegEncContext *s = &r->s;
666  uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
667  int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
668  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
669  int is16x16 = 1;
670  int emu = 0;
671 
672  if(thirdpel){
673  int chroma_mx, chroma_my;
674  mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
675  my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
676  lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
677  ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
678  chroma_mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
679  chroma_my = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
680  umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
681  umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
682  uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
683  uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
684  }else{
685  int cx, cy;
686  mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
687  my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
688  lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
689  ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
690  cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
691  cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
692  umx = cx >> 2;
693  umy = cy >> 2;
694  uvmx = (cx & 3) << 1;
695  uvmy = (cy & 3) << 1;
696  //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
697  if(uvmx == 6 && uvmy == 6)
698  uvmx = uvmy = 4;
699  }
700 
701  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
702  /* wait for the referenced mb row to be finished */
703  int mb_row = s->mb_y + ((yoff + my + 5 + 8 * height) >> 4);
704  ThreadFrame *f = dir ? &s->next_picture_ptr->tf : &s->last_picture_ptr->tf;
705  ff_thread_await_progress(f, mb_row, 0);
706  }
707 
708  dxy = ly*4 + lx;
709  srcY = dir ? s->next_picture_ptr->f->data[0] : s->last_picture_ptr->f->data[0];
710  srcU = dir ? s->next_picture_ptr->f->data[1] : s->last_picture_ptr->f->data[1];
711  srcV = dir ? s->next_picture_ptr->f->data[2] : s->last_picture_ptr->f->data[2];
712  src_x = s->mb_x * 16 + xoff + mx;
713  src_y = s->mb_y * 16 + yoff + my;
714  uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
715  uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
716  srcY += src_y * s->linesize + src_x;
717  srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
718  srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
719  if(s->h_edge_pos - (width << 3) < 6 || s->v_edge_pos - (height << 3) < 6 ||
720  (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4 ||
721  (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4) {
722  srcY -= 2 + 2*s->linesize;
723  s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, srcY,
724  s->linesize, s->linesize,
725  (width << 3) + 6, (height << 3) + 6,
726  src_x - 2, src_y - 2,
727  s->h_edge_pos, s->v_edge_pos);
728  srcY = s->sc.edge_emu_buffer + 2 + 2*s->linesize;
729  emu = 1;
730  }
731  if(!weighted){
732  Y = s->dest[0] + xoff + yoff *s->linesize;
733  U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
734  V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
735  }else{
736  Y = r->tmp_b_block_y [dir] + xoff + yoff *s->linesize;
737  U = r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
738  V = r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
739  }
740 
741  if(block_type == RV34_MB_P_16x8){
742  qpel_mc[1][dxy](Y, srcY, s->linesize);
743  Y += 8;
744  srcY += 8;
745  }else if(block_type == RV34_MB_P_8x16){
746  qpel_mc[1][dxy](Y, srcY, s->linesize);
747  Y += 8 * s->linesize;
748  srcY += 8 * s->linesize;
749  }
750  is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
751  qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
752  if (emu) {
753  uint8_t *uvbuf = s->sc.edge_emu_buffer;
754 
755  s->vdsp.emulated_edge_mc(uvbuf, srcU,
756  s->uvlinesize, s->uvlinesize,
757  (width << 2) + 1, (height << 2) + 1,
758  uvsrc_x, uvsrc_y,
759  s->h_edge_pos >> 1, s->v_edge_pos >> 1);
760  srcU = uvbuf;
761  uvbuf += 9*s->uvlinesize;
762 
763  s->vdsp.emulated_edge_mc(uvbuf, srcV,
764  s->uvlinesize, s->uvlinesize,
765  (width << 2) + 1, (height << 2) + 1,
766  uvsrc_x, uvsrc_y,
767  s->h_edge_pos >> 1, s->v_edge_pos >> 1);
768  srcV = uvbuf;
769  }
770  chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
771  chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
772 }
773 
774 static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
775  const int xoff, const int yoff, int mv_off,
776  const int width, const int height, int dir)
777 {
778  rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30, 0,
779  r->rdsp.put_pixels_tab,
780  r->rdsp.put_chroma_pixels_tab);
781 }
782 
784 {
785  r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][0](r->s.dest[0],
786  r->tmp_b_block_y[0],
787  r->tmp_b_block_y[1],
788  r->weight1,
789  r->weight2,
790  r->s.linesize);
791  r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[1],
792  r->tmp_b_block_uv[0],
793  r->tmp_b_block_uv[2],
794  r->weight1,
795  r->weight2,
796  r->s.uvlinesize);
797  r->rdsp.rv40_weight_pixels_tab[r->scaled_weight][1](r->s.dest[2],
798  r->tmp_b_block_uv[1],
799  r->tmp_b_block_uv[3],
800  r->weight1,
801  r->weight2,
802  r->s.uvlinesize);
803 }
804 
805 static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
806 {
807  int weighted = !r->rv30 && block_type != RV34_MB_B_BIDIR && r->weight1 != 8192;
808 
809  rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30, weighted,
810  r->rdsp.put_pixels_tab,
811  r->rdsp.put_chroma_pixels_tab);
812  if(!weighted){
813  rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 0,
814  r->rdsp.avg_pixels_tab,
815  r->rdsp.avg_chroma_pixels_tab);
816  }else{
817  rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30, 1,
818  r->rdsp.put_pixels_tab,
819  r->rdsp.put_chroma_pixels_tab);
820  rv4_weight(r);
821  }
822 }
823 
825 {
826  int i, j;
827  int weighted = !r->rv30 && r->weight1 != 8192;
828 
829  for(j = 0; j < 2; j++)
830  for(i = 0; i < 2; i++){
831  rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
832  weighted,
833  r->rdsp.put_pixels_tab,
834  r->rdsp.put_chroma_pixels_tab);
835  rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
836  weighted,
837  weighted ? r->rdsp.put_pixels_tab : r->rdsp.avg_pixels_tab,
838  weighted ? r->rdsp.put_chroma_pixels_tab : r->rdsp.avg_chroma_pixels_tab);
839  }
840  if(weighted)
841  rv4_weight(r);
842 }
843 
844 /** number of motion vectors in each macroblock type */
845 static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
846 
847 /**
848  * Decode motion vector differences
849  * and perform motion vector reconstruction and motion compensation.
850  */
851 static int rv34_decode_mv(RV34DecContext *r, int block_type)
852 {
853  MpegEncContext *s = &r->s;
854  GetBitContext *gb = &s->gb;
855  int i, j, k, l;
856  int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
857  int next_bt;
858 
859  memset(r->dmv, 0, sizeof(r->dmv));
860  for(i = 0; i < num_mvs[block_type]; i++){
861  r->dmv[i][0] = get_interleaved_se_golomb(gb);
862  r->dmv[i][1] = get_interleaved_se_golomb(gb);
863  if (r->dmv[i][0] == INVALID_VLC ||
864  r->dmv[i][1] == INVALID_VLC) {
865  r->dmv[i][0] = r->dmv[i][1] = 0;
866  return AVERROR_INVALIDDATA;
867  }
868  }
869  switch(block_type){
870  case RV34_MB_TYPE_INTRA:
872  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
873  return 0;
874  case RV34_MB_SKIP:
875  if(s->pict_type == AV_PICTURE_TYPE_P){
876  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
877  rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
878  break;
879  }
880  case RV34_MB_B_DIRECT:
881  //surprisingly, it uses motion scheme from next reference frame
882  /* wait for the current mb row to be finished */
883  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
884  ff_thread_await_progress(&s->next_picture_ptr->tf, FFMAX(0, s->mb_y-1), 0);
885 
886  next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
887  if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
888  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
889  ZERO8x2(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
890  }else
891  for(j = 0; j < 2; j++)
892  for(i = 0; i < 2; i++)
893  for(k = 0; k < 2; k++)
894  for(l = 0; l < 2; l++)
895  s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
896  if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
897  rv34_mc_2mv(r, block_type);
898  else
900  ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
901  break;
902  case RV34_MB_P_16x16:
903  case RV34_MB_P_MIX16x16:
904  rv34_pred_mv(r, block_type, 0, 0);
905  rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
906  break;
907  case RV34_MB_B_FORWARD:
908  case RV34_MB_B_BACKWARD:
909  r->dmv[1][0] = r->dmv[0][0];
910  r->dmv[1][1] = r->dmv[0][1];
911  if(r->rv30)
912  rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
913  else
914  rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
915  rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
916  break;
917  case RV34_MB_P_16x8:
918  case RV34_MB_P_8x16:
919  rv34_pred_mv(r, block_type, 0, 0);
920  rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
921  if(block_type == RV34_MB_P_16x8){
922  rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
923  rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
924  }
925  if(block_type == RV34_MB_P_8x16){
926  rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
927  rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
928  }
929  break;
930  case RV34_MB_B_BIDIR:
931  rv34_pred_mv_b (r, block_type, 0);
932  rv34_pred_mv_b (r, block_type, 1);
933  rv34_mc_2mv (r, block_type);
934  break;
935  case RV34_MB_P_8x8:
936  for(i=0;i< 4;i++){
937  rv34_pred_mv(r, block_type, i, i);
938  rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
939  }
940  break;
941  }
942 
943  return 0;
944 }
945 /** @} */ // mv group
946 
947 /**
948  * @name Macroblock reconstruction functions
949  * @{
950  */
951 /** mapping of RV30/40 intra prediction types to standard H.264 types */
952 static const int ittrans[9] = {
955 };
956 
957 /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
958 static const int ittrans16[4] = {
960 };
961 
962 /**
963  * Perform 4x4 intra prediction.
964  */
965 static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
966 {
967  uint8_t *prev = dst - stride + 4;
968  uint32_t topleft;
969 
970  if(!up && !left)
971  itype = DC_128_PRED;
972  else if(!up){
973  if(itype == VERT_PRED) itype = HOR_PRED;
974  if(itype == DC_PRED) itype = LEFT_DC_PRED;
975  }else if(!left){
976  if(itype == HOR_PRED) itype = VERT_PRED;
977  if(itype == DC_PRED) itype = TOP_DC_PRED;
979  }
980  if(!down){
982  if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
983  if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
984  }
985  if(!right && up){
986  topleft = dst[-stride + 3] * 0x01010101u;
987  prev = (uint8_t*)&topleft;
988  }
989  r->h.pred4x4[itype](dst, prev, stride);
990 }
991 
992 static inline int adjust_pred16(int itype, int up, int left)
993 {
994  if(!up && !left)
995  itype = DC_128_PRED8x8;
996  else if(!up){
997  if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
998  if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
999  if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
1000  }else if(!left){
1001  if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
1002  if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
1003  if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
1004  }
1005  return itype;
1006 }
1007 
1009  uint8_t *pdst, int stride,
1010  int fc, int sc, int q_dc, int q_ac)
1011 {
1012  MpegEncContext *s = &r->s;
1013  int16_t *ptr = s->block[0];
1014  int has_ac = rv34_decode_block(ptr, &s->gb, r->cur_vlcs,
1015  fc, sc, q_dc, q_ac, q_ac);
1016  if(has_ac){
1017  r->rdsp.rv34_idct_add(pdst, stride, ptr);
1018  }else{
1019  r->rdsp.rv34_idct_dc_add(pdst, stride, ptr[0]);
1020  ptr[0] = 0;
1021  }
1022 }
1023 
1024 static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
1025 {
1026  LOCAL_ALIGNED_16(int16_t, block16, [16]);
1027  MpegEncContext *s = &r->s;
1028  GetBitContext *gb = &s->gb;
1029  int q_dc = rv34_qscale_tab[ r->luma_dc_quant_i[s->qscale] ],
1030  q_ac = rv34_qscale_tab[s->qscale];
1031  uint8_t *dst = s->dest[0];
1032  int16_t *ptr = s->block[0];
1033  int i, j, itype, has_ac;
1034 
1035  memset(block16, 0, 16 * sizeof(*block16));
1036 
1037  has_ac = rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac);
1038  if(has_ac)
1039  r->rdsp.rv34_inv_transform(block16);
1040  else
1041  r->rdsp.rv34_inv_transform_dc(block16);
1042 
1043  itype = ittrans16[intra_types[0]];
1044  itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
1045  r->h.pred16x16[itype](dst, s->linesize);
1046 
1047  for(j = 0; j < 4; j++){
1048  for(i = 0; i < 4; i++, cbp >>= 1){
1049  int dc = block16[i + j*4];
1050 
1051  if(cbp & 1){
1052  has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
1053  }else
1054  has_ac = 0;
1055 
1056  if(has_ac){
1057  ptr[0] = dc;
1058  r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
1059  }else
1060  r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
1061  }
1062 
1063  dst += 4*s->linesize;
1064  }
1065 
1066  itype = ittrans16[intra_types[0]];
1067  if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
1068  itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
1069 
1070  q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
1071  q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
1072 
1073  for(j = 1; j < 3; j++){
1074  dst = s->dest[j];
1075  r->h.pred8x8[itype](dst, s->uvlinesize);
1076  for(i = 0; i < 4; i++, cbp >>= 1){
1077  uint8_t *pdst;
1078  if(!(cbp & 1)) continue;
1079  pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
1080 
1081  rv34_process_block(r, pdst, s->uvlinesize,
1082  r->chroma_vlc, 1, q_dc, q_ac);
1083  }
1084  }
1085 }
1086 
1087 static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
1088 {
1089  MpegEncContext *s = &r->s;
1090  uint8_t *dst = s->dest[0];
1091  int avail[6*8] = {0};
1092  int i, j, k;
1093  int idx, q_ac, q_dc;
1094 
1095  // Set neighbour information.
1096  if(r->avail_cache[1])
1097  avail[0] = 1;
1098  if(r->avail_cache[2])
1099  avail[1] = avail[2] = 1;
1100  if(r->avail_cache[3])
1101  avail[3] = avail[4] = 1;
1102  if(r->avail_cache[4])
1103  avail[5] = 1;
1104  if(r->avail_cache[5])
1105  avail[8] = avail[16] = 1;
1106  if(r->avail_cache[9])
1107  avail[24] = avail[32] = 1;
1108 
1109  q_ac = rv34_qscale_tab[s->qscale];
1110  for(j = 0; j < 4; j++){
1111  idx = 9 + j*8;
1112  for(i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){
1113  rv34_pred_4x4_block(r, dst, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
1114  avail[idx] = 1;
1115  if(!(cbp & 1)) continue;
1116 
1117  rv34_process_block(r, dst, s->linesize,
1118  r->luma_vlc, 0, q_ac, q_ac);
1119  }
1120  dst += s->linesize * 4 - 4*4;
1121  intra_types += r->intra_types_stride;
1122  }
1123 
1124  intra_types -= r->intra_types_stride * 4;
1125 
1126  q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
1127  q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
1128 
1129  for(k = 0; k < 2; k++){
1130  dst = s->dest[1+k];
1131  fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
1132 
1133  for(j = 0; j < 2; j++){
1134  int* acache = r->avail_cache + 6 + j*4;
1135  for(i = 0; i < 2; i++, cbp >>= 1, acache++){
1136  int itype = ittrans[intra_types[i*2+j*2*r->intra_types_stride]];
1137  rv34_pred_4x4_block(r, dst+4*i, s->uvlinesize, itype, acache[-4], acache[-1], !i && !j, acache[-3]);
1138  acache[0] = 1;
1139 
1140  if(!(cbp&1)) continue;
1141 
1142  rv34_process_block(r, dst + 4*i, s->uvlinesize,
1143  r->chroma_vlc, 1, q_dc, q_ac);
1144  }
1145 
1146  dst += 4*s->uvlinesize;
1147  }
1148  }
1149 }
1150 
1151 static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
1152 {
1153  int d;
1154  d = motion_val[0][0] - motion_val[-step][0];
1155  if(d < -3 || d > 3)
1156  return 1;
1157  d = motion_val[0][1] - motion_val[-step][1];
1158  if(d < -3 || d > 3)
1159  return 1;
1160  return 0;
1161 }
1162 
1164 {
1165  MpegEncContext *s = &r->s;
1166  int hmvmask = 0, vmvmask = 0, i, j;
1167  int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
1168  int16_t (*motion_val)[2] = &s->current_picture_ptr->motion_val[0][midx];
1169  for(j = 0; j < 16; j += 8){
1170  for(i = 0; i < 2; i++){
1171  if(is_mv_diff_gt_3(motion_val + i, 1))
1172  vmvmask |= 0x11 << (j + i*2);
1173  if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
1174  hmvmask |= 0x03 << (j + i*2);
1175  }
1176  motion_val += s->b8_stride;
1177  }
1178  if(s->first_slice_line)
1179  hmvmask &= ~0x000F;
1180  if(!s->mb_x)
1181  vmvmask &= ~0x1111;
1182  if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
1183  vmvmask |= (vmvmask & 0x4444) >> 1;
1184  hmvmask |= (hmvmask & 0x0F00) >> 4;
1185  if(s->mb_x)
1186  r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
1187  if(!s->first_slice_line)
1188  r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
1189  }
1190  return hmvmask | vmvmask;
1191 }
1192 
1193 static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
1194 {
1195  MpegEncContext *s = &r->s;
1196  GetBitContext *gb = &s->gb;
1197  uint8_t *dst = s->dest[0];
1198  int16_t *ptr = s->block[0];
1199  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1200  int cbp, cbp2;
1201  int q_dc, q_ac, has_ac;
1202  int i, j;
1203  int dist;
1204 
1205  // Calculate which neighbours are available. Maybe it's worth optimizing too.
1206  memset(r->avail_cache, 0, sizeof(r->avail_cache));
1207  fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
1208  dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
1209  if(s->mb_x && dist)
1210  r->avail_cache[5] =
1211  r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
1212  if(dist >= s->mb_width)
1213  r->avail_cache[2] =
1214  r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
1215  if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
1216  r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
1217  if(s->mb_x && dist > s->mb_width)
1218  r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
1219 
1220  s->qscale = r->si.quant;
1221  cbp = cbp2 = rv34_decode_inter_mb_header(r, intra_types);
1222  r->cbp_luma [mb_pos] = cbp;
1223  r->cbp_chroma[mb_pos] = cbp >> 16;
1224  r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
1225  s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
1226 
1227  if(cbp == -1)
1228  return -1;
1229 
1230  if (IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
1231  if(r->is16) rv34_output_i16x16(r, intra_types, cbp);
1232  else rv34_output_intra(r, intra_types, cbp);
1233  return 0;
1234  }
1235 
1236  if(r->is16){
1237  // Only for RV34_MB_P_MIX16x16
1238  LOCAL_ALIGNED_16(int16_t, block16, [16]);
1239  memset(block16, 0, 16 * sizeof(*block16));
1240  q_dc = rv34_qscale_tab[ r->luma_dc_quant_p[s->qscale] ];
1241  q_ac = rv34_qscale_tab[s->qscale];
1242  if (rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0, q_dc, q_dc, q_ac))
1243  r->rdsp.rv34_inv_transform(block16);
1244  else
1245  r->rdsp.rv34_inv_transform_dc(block16);
1246 
1247  q_ac = rv34_qscale_tab[s->qscale];
1248 
1249  for(j = 0; j < 4; j++){
1250  for(i = 0; i < 4; i++, cbp >>= 1){
1251  int dc = block16[i + j*4];
1252 
1253  if(cbp & 1){
1254  has_ac = rv34_decode_block(ptr, gb, r->cur_vlcs, r->luma_vlc, 0, q_ac, q_ac, q_ac);
1255  }else
1256  has_ac = 0;
1257 
1258  if(has_ac){
1259  ptr[0] = dc;
1260  r->rdsp.rv34_idct_add(dst+4*i, s->linesize, ptr);
1261  }else
1262  r->rdsp.rv34_idct_dc_add(dst+4*i, s->linesize, dc);
1263  }
1264 
1265  dst += 4*s->linesize;
1266  }
1267 
1268  r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
1269  }else{
1270  q_ac = rv34_qscale_tab[s->qscale];
1271 
1272  for(j = 0; j < 4; j++){
1273  for(i = 0; i < 4; i++, cbp >>= 1){
1274  if(!(cbp & 1)) continue;
1275 
1276  rv34_process_block(r, dst + 4*i, s->linesize,
1277  r->luma_vlc, 0, q_ac, q_ac);
1278  }
1279  dst += 4*s->linesize;
1280  }
1281  }
1282 
1283  q_dc = rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]];
1284  q_ac = rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]];
1285 
1286  for(j = 1; j < 3; j++){
1287  dst = s->dest[j];
1288  for(i = 0; i < 4; i++, cbp >>= 1){
1289  uint8_t *pdst;
1290  if(!(cbp & 1)) continue;
1291  pdst = dst + (i&1)*4 + (i&2)*2*s->uvlinesize;
1292 
1293  rv34_process_block(r, pdst, s->uvlinesize,
1294  r->chroma_vlc, 1, q_dc, q_ac);
1295  }
1296  }
1297 
1298  return 0;
1299 }
1300 
1301 static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
1302 {
1303  MpegEncContext *s = &r->s;
1304  int cbp, dist;
1305  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1306 
1307  // Calculate which neighbours are available. Maybe it's worth optimizing too.
1308  memset(r->avail_cache, 0, sizeof(r->avail_cache));
1309  fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
1310  dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
1311  if(s->mb_x && dist)
1312  r->avail_cache[5] =
1313  r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
1314  if(dist >= s->mb_width)
1315  r->avail_cache[2] =
1316  r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
1317  if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
1318  r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
1319  if(s->mb_x && dist > s->mb_width)
1320  r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
1321 
1322  s->qscale = r->si.quant;
1323  cbp = rv34_decode_intra_mb_header(r, intra_types);
1324  r->cbp_luma [mb_pos] = cbp;
1325  r->cbp_chroma[mb_pos] = cbp >> 16;
1326  r->deblock_coefs[mb_pos] = 0xFFFF;
1327  s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
1328 
1329  if(cbp == -1)
1330  return -1;
1331 
1332  if(r->is16){
1333  rv34_output_i16x16(r, intra_types, cbp);
1334  return 0;
1335  }
1336 
1337  rv34_output_intra(r, intra_types, cbp);
1338  return 0;
1339 }
1340 
1342 {
1343  int bits;
1344  if(s->mb_y >= s->mb_height)
1345  return 1;
1346  if(!s->mb_num_left)
1347  return 1;
1348  if(r->s.mb_skip_run > 1)
1349  return 0;
1350  bits = get_bits_left(&s->gb);
1351  if(bits <= 0 || (bits < 8 && !show_bits(&s->gb, bits)))
1352  return 1;
1353  return 0;
1354 }
1355 
1356 
1358 {
1359  av_freep(&r->intra_types_hist);
1360  r->intra_types = NULL;
1361  av_freep(&r->tmp_b_block_base);
1362  av_freep(&r->mb_type);
1363  av_freep(&r->cbp_luma);
1364  av_freep(&r->cbp_chroma);
1365  av_freep(&r->deblock_coefs);
1366 }
1367 
1368 
1370 {
1371  r->intra_types_stride = r->s.mb_width * 4 + 4;
1372 
1373  r->cbp_chroma = av_mallocz(r->s.mb_stride * r->s.mb_height *
1374  sizeof(*r->cbp_chroma));
1375  r->cbp_luma = av_mallocz(r->s.mb_stride * r->s.mb_height *
1376  sizeof(*r->cbp_luma));
1377  r->deblock_coefs = av_mallocz(r->s.mb_stride * r->s.mb_height *
1378  sizeof(*r->deblock_coefs));
1379  r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 *
1380  sizeof(*r->intra_types_hist));
1381  r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height *
1382  sizeof(*r->mb_type));
1383 
1384  if (!(r->cbp_chroma && r->cbp_luma && r->deblock_coefs &&
1385  r->intra_types_hist && r->mb_type)) {
1386  r->s.context_reinit = 1;
1388  return AVERROR(ENOMEM);
1389  }
1390 
1391  r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
1392 
1393  return 0;
1394 }
1395 
1396 
1398 {
1400  return rv34_decoder_alloc(r);
1401 }
1402 
1403 
1404 static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
1405 {
1406  MpegEncContext *s = &r->s;
1407  GetBitContext *gb = &s->gb;
1408  int mb_pos, slice_type;
1409  int res;
1410 
1411  init_get_bits(&r->s.gb, buf, buf_size*8);
1412  res = r->parse_slice_header(r, gb, &r->si);
1413  if(res < 0){
1414  av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
1415  return -1;
1416  }
1417 
1418  slice_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
1419  if (slice_type != s->pict_type) {
1420  av_log(s->avctx, AV_LOG_ERROR, "Slice type mismatch\n");
1421  return AVERROR_INVALIDDATA;
1422  }
1423  if (s->width != r->si.width || s->height != r->si.height) {
1424  av_log(s->avctx, AV_LOG_ERROR, "Size mismatch\n");
1425  return AVERROR_INVALIDDATA;
1426  }
1427 
1428  r->si.end = end;
1429  s->qscale = r->si.quant;
1430  s->mb_num_left = r->si.end - r->si.start;
1431  r->s.mb_skip_run = 0;
1432 
1433  mb_pos = s->mb_x + s->mb_y * s->mb_width;
1434  if(r->si.start != mb_pos){
1435  av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
1436  s->mb_x = r->si.start % s->mb_width;
1437  s->mb_y = r->si.start / s->mb_width;
1438  }
1439  memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1440  s->first_slice_line = 1;
1441  s->resync_mb_x = s->mb_x;
1442  s->resync_mb_y = s->mb_y;
1443 
1445  while(!check_slice_end(r, s)) {
1447 
1448  if(r->si.type)
1449  res = rv34_decode_inter_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
1450  else
1451  res = rv34_decode_intra_macroblock(r, r->intra_types + s->mb_x * 4 + 4);
1452  if(res < 0){
1453  ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_ERROR);
1454  return -1;
1455  }
1456  if (++s->mb_x == s->mb_width) {
1457  s->mb_x = 0;
1458  s->mb_y++;
1460 
1461  memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
1462  memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
1463 
1464  if(r->loop_filter && s->mb_y >= 2)
1465  r->loop_filter(r, s->mb_y - 2);
1466 
1467  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
1468  ff_thread_report_progress(&s->current_picture_ptr->tf,
1469  s->mb_y - 2, 0);
1470 
1471  }
1472  if(s->mb_x == s->resync_mb_x)
1473  s->first_slice_line=0;
1474  s->mb_num_left--;
1475  }
1476  ff_er_add_slice(&s->er, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, ER_MB_END);
1477 
1478  return s->mb_y == s->mb_height;
1479 }
1480 
1481 /** @} */ // reconstruction group end
1482 
1483 /**
1484  * Initialize decoder.
1485  */
1487 {
1488  static AVOnce init_static_once = AV_ONCE_INIT;
1489  RV34DecContext *r = avctx->priv_data;
1490  MpegEncContext *s = &r->s;
1491  int ret;
1492 
1493  ff_mpv_decode_init(s, avctx);
1494  s->out_format = FMT_H263;
1495 
1496  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1497  avctx->has_b_frames = 1;
1498  s->low_delay = 0;
1499 
1501  if ((ret = ff_mpv_common_init(s)) < 0)
1502  return ret;
1503 
1504  ff_h264_pred_init(&r->h, AV_CODEC_ID_RV40, 8, 1);
1505 
1506 #if CONFIG_RV30_DECODER
1507  if (avctx->codec_id == AV_CODEC_ID_RV30)
1508  ff_rv30dsp_init(&r->rdsp);
1509 #endif
1510 #if CONFIG_RV40_DECODER
1511  if (avctx->codec_id == AV_CODEC_ID_RV40)
1512  ff_rv40dsp_init(&r->rdsp);
1513 #endif
1514 
1515  if ((ret = rv34_decoder_alloc(r)) < 0) {
1516  ff_mpv_common_end(&r->s);
1517  return ret;
1518  }
1519 
1520  ff_thread_once(&init_static_once, rv34_init_tables);
1521 
1522  return 0;
1523 }
1524 
1526 {
1527  RV34DecContext *r = dst->priv_data, *r1 = src->priv_data;
1528  MpegEncContext * const s = &r->s, * const s1 = &r1->s;
1529  int err;
1530 
1531  if (dst == src || !s1->context_initialized)
1532  return 0;
1533 
1534  if (s->height != s1->height || s->width != s1->width || s->context_reinit) {
1535  s->height = s1->height;
1536  s->width = s1->width;
1537  if ((err = ff_mpv_common_frame_size_change(s)) < 0)
1538  return err;
1539  if ((err = rv34_decoder_realloc(r)) < 0)
1540  return err;
1541  }
1542 
1543  r->cur_pts = r1->cur_pts;
1544  r->last_pts = r1->last_pts;
1545  r->next_pts = r1->next_pts;
1546 
1547  memset(&r->si, 0, sizeof(r->si));
1548 
1549  // Do no call ff_mpeg_update_thread_context on a partially initialized
1550  // decoder context.
1551  if (!s1->context_initialized)
1552  return 0;
1553 
1554  return ff_mpeg_update_thread_context(dst, src);
1555 }
1556 
1557 static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size)
1558 {
1559  if (n < slice_count) {
1560  if(avctx->slice_count) return avctx->slice_offset[n];
1561  else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
1562  } else
1563  return buf_size;
1564 }
1565 
1566 static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
1567 {
1568  RV34DecContext *r = avctx->priv_data;
1569  MpegEncContext *s = &r->s;
1570  int got_picture = 0, ret;
1571 
1572  ff_er_frame_end(&s->er);
1574  s->mb_num_left = 0;
1575 
1576  if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
1577  ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
1578 
1579  if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
1580  if ((ret = av_frame_ref(pict, s->current_picture_ptr->f)) < 0)
1581  return ret;
1582  ff_print_debug_info(s, s->current_picture_ptr, pict);
1583  ff_mpv_export_qp_table(s, pict, s->current_picture_ptr, FF_QSCALE_TYPE_MPEG1);
1584  got_picture = 1;
1585  } else if (s->last_picture_ptr) {
1586  if ((ret = av_frame_ref(pict, s->last_picture_ptr->f)) < 0)
1587  return ret;
1588  ff_print_debug_info(s, s->last_picture_ptr, pict);
1589  ff_mpv_export_qp_table(s, pict, s->last_picture_ptr, FF_QSCALE_TYPE_MPEG1);
1590  got_picture = 1;
1591  }
1592 
1593  return got_picture;
1594 }
1595 
1596 static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h)
1597 {
1598  // attempt to keep aspect during typical resolution switches
1599  if (!sar.num)
1600  sar = (AVRational){1, 1};
1601 
1602  sar = av_mul_q(sar, av_mul_q((AVRational){new_h, new_w}, (AVRational){old_w, old_h}));
1603  return sar;
1604 }
1605 
1607  void *data, int *got_picture_ptr,
1608  AVPacket *avpkt)
1609 {
1610  const uint8_t *buf = avpkt->data;
1611  int buf_size = avpkt->size;
1612  RV34DecContext *r = avctx->priv_data;
1613  MpegEncContext *s = &r->s;
1614  AVFrame *pict = data;
1615  SliceInfo si;
1616  int i, ret;
1617  int slice_count;
1618  const uint8_t *slices_hdr = NULL;
1619  int last = 0;
1620  int faulty_b = 0;
1621  int offset;
1622 
1623  /* no supplementary picture */
1624  if (buf_size == 0) {
1625  /* special case for last picture */
1626  if (s->low_delay==0 && s->next_picture_ptr) {
1627  if ((ret = av_frame_ref(pict, s->next_picture_ptr->f)) < 0)
1628  return ret;
1629  s->next_picture_ptr = NULL;
1630 
1631  *got_picture_ptr = 1;
1632  }
1633  return 0;
1634  }
1635 
1636  if(!avctx->slice_count){
1637  slice_count = (*buf++) + 1;
1638  slices_hdr = buf + 4;
1639  buf += 8 * slice_count;
1640  buf_size -= 1 + 8 * slice_count;
1641  }else
1642  slice_count = avctx->slice_count;
1643 
1644  offset = get_slice_offset(avctx, slices_hdr, 0, slice_count, buf_size);
1645  //parse first slice header to check whether this frame can be decoded
1646  if(offset < 0 || offset > buf_size){
1647  av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
1648  return AVERROR_INVALIDDATA;
1649  }
1650  init_get_bits(&s->gb, buf+offset, (buf_size-offset)*8);
1651  if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
1652  av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
1653  return AVERROR_INVALIDDATA;
1654  }
1655  if ((!s->last_picture_ptr || !s->last_picture_ptr->f->data[0]) &&
1656  si.type == AV_PICTURE_TYPE_B) {
1657  av_log(avctx, AV_LOG_ERROR, "Invalid decoder state: B-frame without "
1658  "reference data.\n");
1659  faulty_b = 1;
1660  }
1661  if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
1662  || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
1663  || avctx->skip_frame >= AVDISCARD_ALL)
1664  return avpkt->size;
1665 
1666  /* first slice */
1667  if (si.start == 0) {
1668  if (s->mb_num_left > 0 && s->current_picture_ptr) {
1669  av_log(avctx, AV_LOG_ERROR, "New frame but still %d MB left.\n",
1670  s->mb_num_left);
1671  if (!s->context_reinit)
1672  ff_er_frame_end(&s->er);
1674  }
1675 
1676  if (s->width != si.width || s->height != si.height || s->context_reinit) {
1677  int err;
1678 
1679  av_log(s->avctx, AV_LOG_WARNING, "Changing dimensions to %dx%d\n",
1680  si.width, si.height);
1681 
1682  if (av_image_check_size(si.width, si.height, 0, s->avctx))
1683  return AVERROR_INVALIDDATA;
1684 
1685  s->avctx->sample_aspect_ratio = update_sar(
1686  s->width, s->height, s->avctx->sample_aspect_ratio,
1687  si.width, si.height);
1688  s->width = si.width;
1689  s->height = si.height;
1690 
1691  err = ff_set_dimensions(s->avctx, s->width, s->height);
1692  if (err < 0)
1693  return err;
1694  if ((err = ff_mpv_common_frame_size_change(s)) < 0)
1695  return err;
1696  if ((err = rv34_decoder_realloc(r)) < 0)
1697  return err;
1698  }
1699  if (faulty_b)
1700  return AVERROR_INVALIDDATA;
1701  s->pict_type = si.type ? si.type : AV_PICTURE_TYPE_I;
1702  if (ff_mpv_frame_start(s, s->avctx) < 0)
1703  return -1;
1705  if (!r->tmp_b_block_base) {
1706  int i;
1707 
1708  r->tmp_b_block_base = av_malloc(s->linesize * 48);
1709  for (i = 0; i < 2; i++)
1710  r->tmp_b_block_y[i] = r->tmp_b_block_base
1711  + i * 16 * s->linesize;
1712  for (i = 0; i < 4; i++)
1713  r->tmp_b_block_uv[i] = r->tmp_b_block_base + 32 * s->linesize
1714  + (i >> 1) * 8 * s->uvlinesize
1715  + (i & 1) * 16;
1716  }
1717  r->cur_pts = si.pts;
1718  if (s->pict_type != AV_PICTURE_TYPE_B) {
1719  r->last_pts = r->next_pts;
1720  r->next_pts = r->cur_pts;
1721  } else {
1722  int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
1723  int dist0 = GET_PTS_DIFF(r->cur_pts, r->last_pts);
1724  int dist1 = GET_PTS_DIFF(r->next_pts, r->cur_pts);
1725 
1726  if(!refdist){
1727  r->mv_weight1 = r->mv_weight2 = r->weight1 = r->weight2 = 8192;
1728  r->scaled_weight = 0;
1729  }else{
1730  if (FFMAX(dist0, dist1) > refdist)
1731  av_log(avctx, AV_LOG_TRACE, "distance overflow\n");
1732 
1733  r->mv_weight1 = (dist0 << 14) / refdist;
1734  r->mv_weight2 = (dist1 << 14) / refdist;
1735  if((r->mv_weight1|r->mv_weight2) & 511){
1736  r->weight1 = r->mv_weight1;
1737  r->weight2 = r->mv_weight2;
1738  r->scaled_weight = 0;
1739  }else{
1740  r->weight1 = r->mv_weight1 >> 9;
1741  r->weight2 = r->mv_weight2 >> 9;
1742  r->scaled_weight = 1;
1743  }
1744  }
1745  }
1746  s->mb_x = s->mb_y = 0;
1747  ff_thread_finish_setup(s->avctx);
1748  } else if (s->context_reinit) {
1749  av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames to "
1750  "reinitialize (start MB is %d).\n", si.start);
1751  return AVERROR_INVALIDDATA;
1752  } else if (HAVE_THREADS &&
1753  (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
1754  av_log(s->avctx, AV_LOG_ERROR, "Decoder needs full frames in frame "
1755  "multithreading mode (start MB is %d).\n", si.start);
1756  return AVERROR_INVALIDDATA;
1757  }
1758 
1759  for(i = 0; i < slice_count; i++){
1760  int offset = get_slice_offset(avctx, slices_hdr, i , slice_count, buf_size);
1761  int offset1 = get_slice_offset(avctx, slices_hdr, i+1, slice_count, buf_size);
1762  int size;
1763 
1764  if(offset < 0 || offset > offset1 || offset1 > buf_size){
1765  av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
1766  break;
1767  }
1768  size = offset1 - offset;
1769 
1770  r->si.end = s->mb_width * s->mb_height;
1771  s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
1772 
1773  if(i+1 < slice_count){
1774  int offset2 = get_slice_offset(avctx, slices_hdr, i+2, slice_count, buf_size);
1775  if (offset2 < offset1 || offset2 > buf_size) {
1776  av_log(avctx, AV_LOG_ERROR, "Slice offset is invalid\n");
1777  break;
1778  }
1779  init_get_bits(&s->gb, buf+offset1, (buf_size-offset1)*8);
1780  if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
1781  size = offset2 - offset;
1782  }else
1783  r->si.end = si.start;
1784  }
1785  av_assert0 (size >= 0 && size <= buf_size - offset);
1786  last = rv34_decode_slice(r, r->si.end, buf + offset, size);
1787  if(last)
1788  break;
1789  }
1790 
1791  if (s->current_picture_ptr) {
1792  if (last) {
1793  if(r->loop_filter)
1794  r->loop_filter(r, s->mb_height - 1);
1795 
1796  ret = finish_frame(avctx, pict);
1797  if (ret < 0)
1798  return ret;
1799  *got_picture_ptr = ret;
1800  } else if (HAVE_THREADS &&
1801  (s->avctx->active_thread_type & FF_THREAD_FRAME)) {
1802  av_log(avctx, AV_LOG_INFO, "marking unfished frame as finished\n");
1803  /* always mark the current frame as finished, frame-mt supports
1804  * only complete frames */
1805  ff_er_frame_end(&s->er);
1807  s->mb_num_left = 0;
1808  ff_thread_report_progress(&s->current_picture_ptr->tf, INT_MAX, 0);
1809  return AVERROR_INVALIDDATA;
1810  }
1811  }
1812 
1813  return avpkt->size;
1814 }
1815 
1817 {
1818  RV34DecContext *r = avctx->priv_data;
1819 
1820  ff_mpv_common_end(&r->s);
1822 
1823  return 0;
1824 }
static double val(void *priv, double ch)
Definition: aeval.c:76
#define U(x)
Definition: vp56_arith.h:37
#define A(x)
Definition: vp56_arith.h:28
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> dc
uint8_t
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
Libavcodec external API header.
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:1784
#define V
Definition: avdct.c:30
#define AV_RB32
Definition: intreadwrite.h:130
#define AV_RL32
Definition: intreadwrite.h:146
int ff_init_vlc_sparse(VLC *vlc_arg, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
Definition: bitstream.c:323
#define Y
Definition: boxblur.h:38
static const uint8_t shifts[2][12]
Definition: camellia.c:174
#define flags(name, subs,...)
Definition: cbs_av1.c:561
#define fc(width, name, range_min, range_max)
Definition: cbs_av1.c:551
#define s(width, name)
Definition: cbs_vp9.c:257
#define f(width, name)
Definition: cbs_vp9.c:255
#define FFMIN(a, b)
Definition: common.h:105
#define FFMAX(a, b)
Definition: common.h:103
#define HAVE_THREADS
Definition: config.h:275
#define NULL
Definition: coverity.c:32
#define SUINT
static float mul(float src0, float src1)
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
void ff_er_frame_end(ERContext *s)
#define ER_MB_END
#define ER_MB_ERROR
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:828
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:446
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:659
exp golomb vlc stuff
static int get_interleaved_se_golomb(GetBitContext *gb)
Definition: golomb.h:303
#define INVALID_VLC
Definition: golomb.h:38
@ AV_CODEC_ID_RV40
Definition: codec_id.h:118
@ AV_CODEC_ID_RV30
Definition: codec_id.h:117
@ AVDISCARD_ALL
discard all
Definition: avcodec.h:236
@ AVDISCARD_NONKEY
discard all frames except keyframes
Definition: avcodec.h:235
@ AVDISCARD_NONREF
discard all non reference
Definition: avcodec.h:232
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AVERROR(e)
Definition: error.h:43
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:443
#define AV_LOG_TRACE
Extremely verbose debugging, useful for libav* development.
Definition: log.h:220
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_INFO
Standard information.
Definition: log.h:205
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
AVRational av_mul_q(AVRational b, AVRational c)
Multiply two rationals.
Definition: rational.c:80
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:317
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:274
@ AV_PICTURE_TYPE_P
Predicted.
Definition: avutil.h:275
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
Definition: avutil.h:276
void(* h264_chroma_mc_func)(uint8_t *dst, uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
Definition: h264chroma.h:25
#define DIAG_DOWN_LEFT_PRED_RV40_NODOWN
Definition: h264pred.h:54
#define TOP_DC_PRED8x8
Definition: h264pred.h:75
#define HOR_UP_PRED_RV40_NODOWN
Definition: h264pred.h:55
#define HOR_PRED8x8
Definition: h264pred.h:69
#define VERT_PRED8x8
Definition: h264pred.h:70
#define DC_PRED8x8
Definition: h264pred.h:68
#define LEFT_DC_PRED8x8
Definition: h264pred.h:74
#define VERT_LEFT_PRED_RV40_NODOWN
Definition: h264pred.h:56
#define PLANE_PRED8x8
Definition: h264pred.h:71
#define DC_128_PRED8x8
Definition: h264pred.h:76
for(j=16;j >0;--j)
#define IS_INTRA(x, y)
#define B
Definition: huffyuvdsp.h:32
cl_device_type type
misc image utilities
int i
Definition: input.c:407
#define C
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:84
#define FF_QSCALE_TYPE_MPEG1
Definition: internal.h:97
common internal API header
#define AVOnce
Definition: thread.h:172
static int ff_thread_once(char *control, void(*routine)(void))
Definition: thread.h:175
#define AV_ONCE_INIT
Definition: thread.h:173
static const uint16_t mask[17]
Definition: lzw.c:38
int stride
Definition: mace.c:144
#define mid_pred
Definition: mathops.h:97
#define LOCAL_ALIGNED_16(t, v,...)
Definition: mem_internal.h:130
void ff_mpeg_er_frame_start(MpegEncContext *s)
Definition: mpeg_er.c:46
#define MB_TYPE_8x8
Definition: mpegutils.h:57
#define MB_TYPE_8x16
Definition: mpegutils.h:56
#define MB_TYPE_SKIP
Definition: mpegutils.h:62
#define MB_TYPE_L1
Definition: mpegutils.h:68
#define IS_16X8(a)
Definition: mpegutils.h:87
#define IS_8X16(a)
Definition: mpegutils.h:88
#define MB_TYPE_INTRA
Definition: mpegutils.h:73
#define MB_TYPE_L0L1
Definition: mpegutils.h:69
#define MB_TYPE_DIRECT2
Definition: mpegutils.h:59
#define MB_TYPE_16x8
Definition: mpegutils.h:55
#define MB_TYPE_INTRA16x16
Definition: mpegutils.h:52
#define IS_8X8(a)
Definition: mpegutils.h:89
#define MB_TYPE_16x16
Definition: mpegutils.h:54
#define MB_TYPE_L0
Definition: mpegutils.h:67
#define IS_SKIP(a)
Definition: mpegutils.h:81
#define IS_INTRA16x16(a)
Definition: mpegutils.h:76
@ FMT_H263
Definition: mpegutils.h:126
int ff_mpv_frame_start(MpegEncContext *s, AVCodecContext *avctx)
generic function called after decoding the header and before a frame is decoded.
Definition: mpegvideo.c:1181
void ff_mpv_common_end(MpegEncContext *s)
Definition: mpegvideo.c:1111
void ff_mpv_frame_end(MpegEncContext *s)
Definition: mpegvideo.c:1405
av_cold int ff_mpv_common_init(MpegEncContext *s)
init common structure for both encoder and decoder.
Definition: mpegvideo.c:913
int ff_mpv_export_qp_table(MpegEncContext *s, AVFrame *f, Picture *p, int qp_type)
Definition: mpegvideo.c:1420
av_cold void ff_mpv_idct_init(MpegEncContext *s)
Definition: mpegvideo.c:331
void ff_print_debug_info(MpegEncContext *s, Picture *p, AVFrame *pict)
Definition: mpegvideo.c:1413
void ff_mpv_decode_init(MpegEncContext *s, AVCodecContext *avctx)
Initialize the given MpegEncContext for decoding.
Definition: mpegvideo.c:699
void ff_init_block_index(MpegEncContext *s)
Definition: mpegvideo.c:2267
int ff_mpeg_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: mpegvideo.c:524
int ff_mpv_common_frame_size_change(MpegEncContext *s)
Definition: mpegvideo.c:1055
mpegvideo header.
static void ff_update_block_index(MpegEncContext *s)
Definition: mpegvideo.h:750
const char data[16]
Definition: mxf.c:142
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
static const uint16_t table[]
Definition: prosumer.c:206
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
void ff_thread_finish_setup(AVCodecContext *avctx)
If the codec defines update_thread_context(), call this when they are ready for the next thread to st...
quarterpel DSP functions
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
Definition: qpeldsp.h:65
useful rectangle filling function
#define s1
Definition: regdef.h:38
av_cold void ff_rv30dsp_init(RV34DSPContext *c)
Definition: rv30dsp.c:265
static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
Decode coded block pattern.
Definition: rv34.c:180
static av_cold void rv34_init_tables(void)
Initialize all tables.
Definition: rv34.c:125
static const int rv34_mb_type_to_lavc[12]
translation of RV30/40 macroblock types to lavc ones
Definition: rv34.c:57
static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
Decode intra macroblock header and return CBP in case of success, -1 otherwise.
Definition: rv34.c:346
static int adjust_pred16(int itype, int up, int left)
Definition: rv34.c:992
static void rv34_decoder_free(RV34DecContext *r)
Definition: rv34.c:1357
static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t *buf, int buf_size)
Definition: rv34.c:1404
static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h)
Definition: rv34.c:1596
static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
Definition: rv34.c:805
static const int chroma_coeffs[3]
Definition: rv34.c:641
static void rv4_weight(RV34DecContext *r)
Definition: rv34.c:783
static void rv34_pred_b_vector(int A[2], int B[2], int C[2], int A_avail, int B_avail, int C_avail, int *mx, int *my)
Predict motion vector for B-frame macroblock.
Definition: rv34.c:523
static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
Definition: rv34.c:1024
static int rv34_decoder_realloc(RV34DecContext *r)
Definition: rv34.c:1397
static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size)
Definition: rv34.c:1557
static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *syms, int *offset)
Generate VLC from codeword lengths.
Definition: rv34.c:92
static int rv34_decode_mv(RV34DecContext *r, int block_type)
Decode motion vector differences and perform motion vector reconstruction and motion compensation.
Definition: rv34.c:851
static RV34VLC * choose_vlc_set(int quant, int mod, int type)
Select VLC set for decoding from current quantizer, modifier and frame type.
Definition: rv34.c:334
static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
Perform 4x4 intra prediction.
Definition: rv34.c:965
static void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q_dc, int q_ac1, int q_ac2)
Definition: rv34.c:257
static int rv34_set_deblock_coef(RV34DecContext *r)
Definition: rv34.c:1163
static void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
Decode 2x2 subblock of coefficients.
Definition: rv34.c:233
static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
Definition: rv34.c:1301
static int calc_add_mv(RV34DecContext *r, int dir, int val)
Calculate motion vector component that should be added for direct blocks.
Definition: rv34.c:513
av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
Definition: rv34.c:1816
static void rv34_mc(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir, const int thirdpel, int weighted, qpel_mc_func(*qpel_mc)[16], h264_chroma_mc_func(*chroma_mc))
generic motion compensation function
Definition: rv34.c:658
static void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
Decode a single coefficient.
Definition: rv34.c:251
static RV34VLC inter_vlcs[NUM_INTER_TABLES]
Definition: rv34.c:73
int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
Decode starting slice position.
Definition: rv34.c:322
static VLC_TYPE table_data[117592][2]
Definition: rv34.c:82
static void rv34_mc_1mv(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir)
Definition: rv34.c:774
static void ZERO8x2(void *dst, int stride)
Definition: rv34.c:50
static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
Definition: rv34.c:1087
static const uint8_t avail_indexes[4]
availability index for subblocks
Definition: rv34.c:450
int ff_rv34_decode_frame(AVCodecContext *avctx, void *data, int *got_picture_ptr, AVPacket *avpkt)
Definition: rv34.c:1606
static const int ittrans16[4]
mapping of RV30/40 intra 16x16 prediction types to standard H.264 types
Definition: rv34.c:958
static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
Definition: rv34.c:1341
static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
Decode coefficients for 4x4 block.
Definition: rv34.c:279
#define GET_PTS_DIFF(a, b)
Definition: rv34.c:508
static const uint8_t part_sizes_w[RV34_MB_TYPES]
macroblock partition width in 8x8 blocks
Definition: rv34.c:444
static void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC *vlc, int q)
Get one coefficient value from the bitstream and store it.
Definition: rv34.c:213
static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
Definition: rv34.c:1566
static const uint8_t part_sizes_h[RV34_MB_TYPES]
macroblock partition height in 8x8 blocks
Definition: rv34.c:447
static const int num_mvs[RV34_MB_TYPES]
number of motion vectors in each macroblock type
Definition: rv34.c:845
static int rv34_decoder_alloc(RV34DecContext *r)
Definition: rv34.c:1369
static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
Decode inter macroblock header and return CBP in case of success, -1 otherwise.
Definition: rv34.c:381
static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
motion vector prediction - RV3 version
Definition: rv34.c:595
static RV34VLC intra_vlcs[NUM_INTRA_TABLES]
Definition: rv34.c:73
static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
motion vector prediction for B-frames
Definition: rv34.c:543
static void rv34_mc_2mv_skip(RV34DecContext *r)
Definition: rv34.c:824
av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
Initialize decoder.
Definition: rv34.c:1486
int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: rv34.c:1525
static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
Definition: rv34.c:1193
static int is_mv_diff_gt_3(int16_t(*motion_val)[2], int step)
Definition: rv34.c:1151
static void rv34_process_block(RV34DecContext *r, uint8_t *pdst, int stride, int fc, int sc, int q_dc, int q_ac)
Definition: rv34.c:1008
static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
motion vector prediction
Definition: rv34.c:459
static const int ittrans[9]
mapping of RV30/40 intra prediction types to standard H.264 types
Definition: rv34.c:952
RV30 and RV40 decoder common data declarations.
@ RV34_MB_TYPE_INTRA
Intra macroblock.
Definition: rv34.h:45
@ RV34_MB_P_MIX16x16
P-frame macroblock with DCs in a separate 4x4 block, one motion vector.
Definition: rv34.h:56
@ RV34_MB_P_16x8
P-frame macroblock, 16x8 motion compensation partitions.
Definition: rv34.h:53
@ RV34_MB_B_BIDIR
Bidirectionally predicted B-frame macroblock, two motion vectors.
Definition: rv34.h:55
@ RV34_MB_B_BACKWARD
B-frame macroblock, backward prediction.
Definition: rv34.h:50
@ RV34_MB_B_DIRECT
Bidirectionally predicted B-frame macroblock, no motion vectors.
Definition: rv34.h:52
@ RV34_MB_P_16x16
P-frame macroblock, one motion frame.
Definition: rv34.h:47
@ RV34_MB_TYPES
Definition: rv34.h:57
@ RV34_MB_P_8x16
P-frame macroblock, 8x16 motion compensation partitions.
Definition: rv34.h:54
@ RV34_MB_P_8x8
P-frame macroblock, 8x8 motion compensation partitions.
Definition: rv34.h:48
@ RV34_MB_B_FORWARD
B-frame macroblock, forward prediction.
Definition: rv34.h:49
@ RV34_MB_TYPE_INTRA16x16
Intra macroblock with DCs in a separate 4x4 block.
Definition: rv34.h:46
@ RV34_MB_SKIP
Skipped block.
Definition: rv34.h:51
#define MB_TYPE_SEPARATE_DC
Definition: rv34.h:38
miscellaneous RV30/40 tables
static const uint8_t modulo_three_table[108]
precalculated results of division by three and modulo three for values 0-107
Definition: rv34data.h:53
static const uint8_t rv34_chroma_quant[2][32]
quantizer values used for AC and DC coefficients in chroma blocks
Definition: rv34data.h:74
static const uint8_t rv34_quant_to_vlc_set[2][32]
tables used to translate a quantizer value into a VLC set for decoding The first table is used for in...
Definition: rv34data.h:95
static const uint16_t rv34_qscale_tab[32]
This table is used for dequantizing.
Definition: rv34data.h:84
static const uint8_t rv34_cbp_code[16]
values used to reconstruct coded block pattern
Definition: rv34data.h:42
static const uint8_t rv34_count_ones[16]
number of ones in nibble minus one
Definition: rv34data.h:35
static const uint8_t rv34_mb_bits_sizes[6]
bits needed to code the slice offset for the given size
Definition: rv34data.h:111
static const uint16_t rv34_mb_max_sizes[6]
maximum number of macroblocks for each of the possible slice offset sizes
Definition: rv34data.h:106
void ff_rv40dsp_init(RV34DSPContext *c)
Definition: rv40dsp.c:620
RV30/40 VLC tables.
#define MAX_VLC_SIZE
Definition: rv34vlc.h:40
static const uint8_t rv34_intra_coeff[NUM_INTRA_TABLES][COEFF_VLC_SIZE]
Definition: rv34vlc.h:2281
static const uint8_t rv34_inter_cbppat[NUM_INTER_TABLES][CBPPAT_VLC_SIZE]
Definition: rv34vlc.h:2305
#define NUM_INTRA_TABLES
Definition: rv34vlc.h:32
static const uint8_t rv34_table_intra_thirdpat[NUM_INTRA_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:2177
#define OTHERBLK_VLC_SIZE
Definition: rv34vlc.h:38
#define FIRSTBLK_VLC_SIZE
Definition: rv34vlc.h:37
static const uint8_t rv34_inter_cbp[NUM_INTER_TABLES][4][CBP_VLC_SIZE]
Definition: rv34vlc.h:2890
static const uint8_t rv34_table_inter_secondpat[NUM_INTER_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:3737
static const uint8_t rv34_table_intra_cbp[NUM_INTRA_TABLES][8][CBP_VLC_SIZE]
Definition: rv34vlc.h:886
static const uint8_t rv34_table_intra_secondpat[NUM_INTRA_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:2074
#define COEFF_VLC_SIZE
Definition: rv34vlc.h:39
static const uint8_t rv34_table_intra_firstpat[NUM_INTRA_TABLES][4][FIRSTBLK_VLC_SIZE]
Definition: rv34vlc.h:940
#define CBPPAT_VLC_SIZE
Definition: rv34vlc.h:35
#define CBP_VLC_SIZE
Definition: rv34vlc.h:36
static const uint8_t rv34_table_inter_firstpat[NUM_INTER_TABLES][2][FIRSTBLK_VLC_SIZE]
Definition: rv34vlc.h:2936
static const uint8_t rv34_inter_coeff[NUM_INTER_TABLES][COEFF_VLC_SIZE]
Definition: rv34vlc.h:4024
static const uint8_t rv34_table_intra_cbppat[NUM_INTRA_TABLES][2][CBPPAT_VLC_SIZE]
Definition: rv34vlc.h:42
#define NUM_INTER_TABLES
Definition: rv34vlc.h:33
static const uint8_t rv34_table_inter_thirdpat[NUM_INTER_TABLES][2][OTHERBLK_VLC_SIZE]
Definition: rv34vlc.h:3880
#define FF_ARRAY_ELEMS(a)
const uint8_t * code
Definition: spdifenc.c:413
main external API structure.
Definition: avcodec.h:536
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:746
int slice_count
slice count
Definition: avcodec.h:890
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:826
enum AVCodecID codec_id
Definition: avcodec.h:546
int * slice_offset
slice offsets in the frame in bytes
Definition: avcodec.h:906
void * priv_data
Definition: avcodec.h:563
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:2006
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
This structure stores compressed data.
Definition: packet.h:346
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
Rational number (pair of numerator and denominator).
Definition: rational.h:58
int num
Numerator.
Definition: rational.h:59
MpegEncContext.
Definition: mpegvideo.h:81
Picture.
Definition: mpegpicture.h:45
int16_t(*[2] motion_val)[2]
Definition: mpegpicture.h:53
uint32_t * mb_type
types and macros are defined in mpegutils.h
Definition: mpegpicture.h:56
decoder context
Definition: rv34.h:86
VLC tables used by the decoder.
Definition: rv34.h:65
VLC cbppattern[2]
VLCs used for pattern of coded block patterns decoding.
Definition: rv34.h:66
VLC cbp[2][4]
VLCs used for coded block patterns decoding.
Definition: rv34.h:67
VLC second_pattern[2]
VLCs used for decoding coefficients in the subblocks 2 and 3.
Definition: rv34.h:69
VLC third_pattern[2]
VLCs used for decoding coefficients in the last subblock.
Definition: rv34.h:70
VLC first_pattern[4]
VLCs used for decoding coefficients in the first subblock.
Definition: rv34.h:68
VLC coefficient
VLCs used for decoding big coefficients.
Definition: rv34.h:71
essential slice information
Definition: rv34.h:75
int pts
frame timestamp
Definition: rv34.h:82
int start
Definition: rv34.h:79
int width
coded width
Definition: rv34.h:80
int height
coded height
Definition: rv34.h:81
int type
slice type (intra, inter)
Definition: rv34.h:76
Definition: vlc.h:26
int table_size
Definition: vlc.h:29
int table_allocated
Definition: vlc.h:29
int bits
Definition: vlc.h:27
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
#define av_freep(p)
#define av_malloc(s)
#define av_log(a,...)
#define src
Definition: vp8dsp.c:255
#define height
#define width
int size
#define chroma_mc(a)
Definition: vc1dsp.c:783
const char * r
Definition: vf_curves.c:116
static const double coeff[2][5]
Definition: vf_owdenoise.c:73
static const uint8_t offset[127][2]
Definition: vf_spp.c:107
static int mod(int a, int b)
Modulo operation with only positive remainders.
Definition: vf_v360.c:747
#define INIT_VLC_STATIC_OVERLONG
Definition: vlc.h:96
#define VLC_TYPE
Definition: vlc.h:24
const uint8_t * quant
uint8_t bits
Definition: vp3data.h:141
@ VERT_RIGHT_PRED
Definition: vp9.h:51
@ TOP_DC_PRED
Definition: vp9.h:57
@ VERT_LEFT_PRED
Definition: vp9.h:53
@ HOR_UP_PRED
Definition: vp9.h:54
@ LEFT_DC_PRED
Definition: vp9.h:56
@ DIAG_DOWN_LEFT_PRED
Definition: vp9.h:49
@ DIAG_DOWN_RIGHT_PRED
Definition: vp9.h:50
@ DC_128_PRED
Definition: vp9.h:58
@ VERT_PRED
Definition: vp9.h:46
@ HOR_DOWN_PRED
Definition: vp9.h:52
@ HOR_PRED
Definition: vp9.h:47
@ DC_PRED
Definition: vp9.h:48