FFmpeg  4.4
snowdec.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "snow_dwt.h"
26 #include "internal.h"
27 #include "snow.h"
28 
29 #include "rangecoder.h"
30 #include "mathops.h"
31 
32 #include "mpegvideo.h"
33 #include "h263.h"
34 
35 static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
36  Plane *p= &s->plane[plane_index];
37  const int mb_w= s->b_width << s->block_max_depth;
38  const int mb_h= s->b_height << s->block_max_depth;
39  int x, y, mb_x;
40  int block_size = MB_SIZE >> s->block_max_depth;
41  int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
42  int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
43  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
44  int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
45  int ref_stride= s->current_picture->linesize[plane_index];
46  uint8_t *dst8= s->current_picture->data[plane_index];
47  int w= p->width;
48  int h= p->height;
49 
50  if(s->keyframe || (s->avctx->debug&512)){
51  if(mb_y==mb_h)
52  return;
53 
54  if(add){
55  for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
56 // DWTELEM * line = slice_buffer_get_line(sb, y);
57  IDWTELEM * line = sb->line[y];
58  for(x=0; x<w; x++){
59 // int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
60  int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
61  v >>= FRAC_BITS;
62  if(v&(~255)) v= ~(v>>31);
63  dst8[x + y*ref_stride]= v;
64  }
65  }
66  }else{
67  for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
68 // DWTELEM * line = slice_buffer_get_line(sb, y);
69  IDWTELEM * line = sb->line[y];
70  for(x=0; x<w; x++){
71  line[x] -= 128 << FRAC_BITS;
72 // buf[x + y*w]-= 128<<FRAC_BITS;
73  }
74  }
75  }
76 
77  return;
78  }
79 
80  for(mb_x=0; mb_x<=mb_w; mb_x++){
81  add_yblock(s, 1, sb, old_buffer, dst8, obmc,
82  block_w*mb_x - block_w/2,
83  block_h*mb_y - block_h/2,
84  block_w, block_h,
85  w, h,
86  w, ref_stride, obmc_stride,
87  mb_x - 1, mb_y - 1,
88  add, 0, plane_index);
89  }
90 
91  if(s->avmv && mb_y < mb_h && plane_index == 0)
92  for(mb_x=0; mb_x<mb_w; mb_x++){
93  AVMotionVector *avmv = s->avmv + s->avmv_index;
94  const int b_width = s->b_width << s->block_max_depth;
95  const int b_stride= b_width;
96  BlockNode *bn= &s->block[mb_x + mb_y*b_stride];
97 
98  if (bn->type)
99  continue;
100 
101  s->avmv_index++;
102 
103  avmv->w = block_w;
104  avmv->h = block_h;
105  avmv->dst_x = block_w*mb_x - block_w/2;
106  avmv->dst_y = block_h*mb_y - block_h/2;
107  avmv->motion_scale = 8;
108  avmv->motion_x = bn->mx * s->mv_scale;
109  avmv->motion_y = bn->my * s->mv_scale;
110  avmv->src_x = avmv->dst_x + avmv->motion_x / 8;
111  avmv->src_y = avmv->dst_y + avmv->motion_y / 8;
112  avmv->source= -1 - bn->ref;
113  avmv->flags = 0;
114  }
115 }
116 
117 static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
118  const int w= b->width;
119  int y;
120  const int qlog= av_clip(s->qlog + (int64_t)b->qlog, 0, QROOT*16);
121  int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
122  int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
123  int new_index = 0;
124 
125  if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){
126  qadd= 0;
127  qmul= 1<<QEXPSHIFT;
128  }
129 
130  /* If we are on the second or later slice, restore our index. */
131  if (start_y != 0)
132  new_index = save_state[0];
133 
134 
135  for(y=start_y; y<h; y++){
136  int x = 0;
137  int v;
138  IDWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
139  memset(line, 0, b->width*sizeof(IDWTELEM));
140  v = b->x_coeff[new_index].coeff;
141  x = b->x_coeff[new_index++].x;
142  while(x < w){
143  register int t= (int)( (v>>1)*(unsigned)qmul + qadd)>>QEXPSHIFT;
144  register int u= -(v&1);
145  line[x] = (t^u) - u;
146 
147  v = b->x_coeff[new_index].coeff;
148  x = b->x_coeff[new_index++].x;
149  }
150  }
151 
152  /* Save our variables for the next slice. */
153  save_state[0] = new_index;
154 
155  return;
156 }
157 
158 static int decode_q_branch(SnowContext *s, int level, int x, int y){
159  const int w= s->b_width << s->block_max_depth;
160  const int rem_depth= s->block_max_depth - level;
161  const int index= (x + y*w) << rem_depth;
162  int trx= (x+1)<<rem_depth;
163  const BlockNode *left = x ? &s->block[index-1] : &null_block;
164  const BlockNode *top = y ? &s->block[index-w] : &null_block;
165  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
166  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
167  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
168  int res;
169 
170  if(s->keyframe){
172  return 0;
173  }
174 
175  if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
176  int type, mx, my;
177  int l = left->color[0];
178  int cb= left->color[1];
179  int cr= left->color[2];
180  unsigned ref = 0;
181  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
182  int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
183  int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));
184 
185  type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
186  if(type){
187  int ld, cbd, crd;
188  pred_mv(s, &mx, &my, 0, left, top, tr);
189  ld = get_symbol(&s->c, &s->block_state[32], 1);
190  if (ld < -255 || ld > 255) {
191  return AVERROR_INVALIDDATA;
192  }
193  l += ld;
194  if (s->nb_planes > 2) {
195  cbd = get_symbol(&s->c, &s->block_state[64], 1);
196  crd = get_symbol(&s->c, &s->block_state[96], 1);
197  if (cbd < -255 || cbd > 255 || crd < -255 || crd > 255) {
198  return AVERROR_INVALIDDATA;
199  }
200  cb += cbd;
201  cr += crd;
202  }
203  }else{
204  if(s->ref_frames > 1)
205  ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
206  if (ref >= s->ref_frames) {
207  av_log(s->avctx, AV_LOG_ERROR, "Invalid ref\n");
208  return AVERROR_INVALIDDATA;
209  }
210  pred_mv(s, &mx, &my, ref, left, top, tr);
211  mx+= (unsigned)get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
212  my+= (unsigned)get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
213  }
214  set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
215  }else{
216  if ((res = decode_q_branch(s, level+1, 2*x+0, 2*y+0)) < 0 ||
217  (res = decode_q_branch(s, level+1, 2*x+1, 2*y+0)) < 0 ||
218  (res = decode_q_branch(s, level+1, 2*x+0, 2*y+1)) < 0 ||
219  (res = decode_q_branch(s, level+1, 2*x+1, 2*y+1)) < 0)
220  return res;
221  }
222  return 0;
223 }
224 
225 static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){
226  const int w= b->width;
227  const int qlog= av_clip(s->qlog + (int64_t)b->qlog, 0, QROOT*16);
228  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
229  const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
230  int x,y;
231 
232  if(s->qlog == LOSSLESS_QLOG) return;
233 
234  for(y=start_y; y<end_y; y++){
235 // DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
236  IDWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
237  for(x=0; x<w; x++){
238  int i= line[x];
239  if(i<0){
240  line[x]= -((-i*(unsigned)qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
241  }else if(i>0){
242  line[x]= (( i*(unsigned)qmul + qadd)>>(QEXPSHIFT));
243  }
244  }
245  }
246 }
247 
248 static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
249  const int w= b->width;
250  int x,y;
251 
252  IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning
253  IDWTELEM * prev;
254 
255  if (start_y != 0)
256  line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
257 
258  for(y=start_y; y<end_y; y++){
259  prev = line;
260 // line = slice_buffer_get_line_from_address(sb, src + (y * stride));
261  line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
262  for(x=0; x<w; x++){
263  if(x){
264  if(use_median){
265  if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
266  else line[x] += line[x - 1];
267  }else{
268  if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
269  else line[x] += line[x - 1];
270  }
271  }else{
272  if(y) line[x] += prev[x];
273  }
274  }
275  }
276 }
277 
278 static void decode_qlogs(SnowContext *s){
279  int plane_index, level, orientation;
280 
281  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
282  for(level=0; level<s->spatial_decomposition_count; level++){
283  for(orientation=level ? 1:0; orientation<4; orientation++){
284  int q;
285  if (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
286  else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
287  else q= get_symbol(&s->c, s->header_state, 1);
288  s->plane[plane_index].band[level][orientation].qlog= q;
289  }
290  }
291  }
292 }
293 
294 #define GET_S(dst, check) \
295  tmp= get_symbol(&s->c, s->header_state, 0);\
296  if(!(check)){\
297  av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\
298  return AVERROR_INVALIDDATA;\
299  }\
300  dst= tmp;
301 
303  int plane_index, tmp;
304  uint8_t kstate[32];
305 
306  memset(kstate, MID_STATE, sizeof(kstate));
307 
308  s->keyframe= get_rac(&s->c, kstate);
309  if(s->keyframe || s->always_reset){
311  s->spatial_decomposition_type=
312  s->qlog=
313  s->qbias=
314  s->mv_scale=
315  s->block_max_depth= 0;
316  }
317  if(s->keyframe){
318  GET_S(s->version, tmp <= 0U)
319  s->always_reset= get_rac(&s->c, s->header_state);
320  s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
321  s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
322  GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
323  s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
324  if (s->colorspace_type == 1) {
325  s->avctx->pix_fmt= AV_PIX_FMT_GRAY8;
326  s->nb_planes = 1;
327  } else if(s->colorspace_type == 0) {
328  s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
329  s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
330 
331  if(s->chroma_h_shift == 1 && s->chroma_v_shift==1){
332  s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
333  }else if(s->chroma_h_shift == 0 && s->chroma_v_shift==0){
334  s->avctx->pix_fmt= AV_PIX_FMT_YUV444P;
335  }else if(s->chroma_h_shift == 2 && s->chroma_v_shift==2){
336  s->avctx->pix_fmt= AV_PIX_FMT_YUV410P;
337  } else {
338  av_log(s, AV_LOG_ERROR, "unsupported color subsample mode %d %d\n", s->chroma_h_shift, s->chroma_v_shift);
339  s->chroma_h_shift = s->chroma_v_shift = 1;
340  s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
341  return AVERROR_INVALIDDATA;
342  }
343  s->nb_planes = 3;
344  } else {
345  av_log(s, AV_LOG_ERROR, "unsupported color space\n");
346  s->chroma_h_shift = s->chroma_v_shift = 1;
347  s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
348  return AVERROR_INVALIDDATA;
349  }
350 
351 
352  s->spatial_scalability= get_rac(&s->c, s->header_state);
353 // s->rate_scalability= get_rac(&s->c, s->header_state);
354  GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES)
355  s->max_ref_frames++;
356 
357  decode_qlogs(s);
358  }
359 
360  if(!s->keyframe){
361  if(get_rac(&s->c, s->header_state)){
362  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
363  int htaps, i, sum=0;
364  Plane *p= &s->plane[plane_index];
365  p->diag_mc= get_rac(&s->c, s->header_state);
366  htaps= get_symbol(&s->c, s->header_state, 0);
367  if((unsigned)htaps >= HTAPS_MAX/2 - 1)
368  return AVERROR_INVALIDDATA;
369  htaps = htaps*2 + 2;
370  p->htaps= htaps;
371  for(i= htaps/2; i; i--){
372  unsigned hcoeff = get_symbol(&s->c, s->header_state, 0);
373  if (hcoeff > 127)
374  return AVERROR_INVALIDDATA;
375  p->hcoeff[i]= hcoeff * (1-2*(i&1));
376  sum += p->hcoeff[i];
377  }
378  p->hcoeff[0]= 32-sum;
379  }
380  s->plane[2].diag_mc= s->plane[1].diag_mc;
381  s->plane[2].htaps = s->plane[1].htaps;
382  memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff));
383  }
384  if(get_rac(&s->c, s->header_state)){
385  GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
386  decode_qlogs(s);
387  }
388  }
389 
390  s->spatial_decomposition_type+= (unsigned)get_symbol(&s->c, s->header_state, 1);
391  if(s->spatial_decomposition_type > 1U){
392  av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported\n", s->spatial_decomposition_type);
393  return AVERROR_INVALIDDATA;
394  }
395  if(FFMIN(s->avctx-> width>>s->chroma_h_shift,
396  s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 1){
397  av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size\n", s->spatial_decomposition_count);
398  return AVERROR_INVALIDDATA;
399  }
400  if (s->avctx->width > 65536-4) {
401  av_log(s->avctx, AV_LOG_ERROR, "Width %d is too large\n", s->avctx->width);
402  return AVERROR_INVALIDDATA;
403  }
404 
405 
406  s->qlog += (unsigned)get_symbol(&s->c, s->header_state, 1);
407  s->mv_scale += (unsigned)get_symbol(&s->c, s->header_state, 1);
408  s->qbias += (unsigned)get_symbol(&s->c, s->header_state, 1);
409  s->block_max_depth+= (unsigned)get_symbol(&s->c, s->header_state, 1);
410  if(s->block_max_depth > 1 || s->block_max_depth < 0 || s->mv_scale > 256U){
411  av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large\n", s->block_max_depth);
412  s->block_max_depth= 0;
413  s->mv_scale = 0;
414  return AVERROR_INVALIDDATA;
415  }
416  if (FFABS(s->qbias) > 127) {
417  av_log(s->avctx, AV_LOG_ERROR, "qbias %d is too large\n", s->qbias);
418  s->qbias = 0;
419  return AVERROR_INVALIDDATA;
420  }
421 
422  return 0;
423 }
424 
426  int x, y;
427  int w= s->b_width;
428  int h= s->b_height;
429  int res;
430 
431  for(y=0; y<h; y++){
432  for(x=0; x<w; x++){
433  if (s->c.bytestream >= s->c.bytestream_end)
434  return AVERROR_INVALIDDATA;
435  if ((res = decode_q_branch(s, 0, x, y)) < 0)
436  return res;
437  }
438  }
439  return 0;
440 }
441 
442 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
443  AVPacket *avpkt)
444 {
445  const uint8_t *buf = avpkt->data;
446  int buf_size = avpkt->size;
447  SnowContext *s = avctx->priv_data;
448  RangeCoder * const c= &s->c;
449  int bytes_read;
450  AVFrame *picture = data;
451  int level, orientation, plane_index;
452  int res;
453 
454  ff_init_range_decoder(c, buf, buf_size);
455  ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
456 
457  s->current_picture->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
458  if ((res = decode_header(s)) < 0)
459  return res;
460  if ((res=ff_snow_common_init_after_header(avctx)) < 0)
461  return res;
462 
463  // realloc slice buffer for the case that spatial_decomposition_count changed
465  if ((res = ff_slice_buffer_init(&s->sb, s->plane[0].height,
466  (MB_SIZE >> s->block_max_depth) +
467  s->spatial_decomposition_count * 11 + 1,
468  s->plane[0].width,
469  s->spatial_idwt_buffer)) < 0)
470  return res;
471 
472  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
473  Plane *p= &s->plane[plane_index];
474  p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40
475  && p->hcoeff[1]==-10
476  && p->hcoeff[2]==2;
477  }
478 
480 
481  if((res = ff_snow_frame_start(s)) < 0)
482  return res;
483 
484  s->current_picture->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
485 
486  //keyframe flag duplication mess FIXME
487  if(avctx->debug&FF_DEBUG_PICT_INFO)
488  av_log(avctx, AV_LOG_ERROR,
489  "keyframe:%d qlog:%d qbias: %d mvscale: %d "
490  "decomposition_type:%d decomposition_count:%d\n",
491  s->keyframe, s->qlog, s->qbias, s->mv_scale,
492  s->spatial_decomposition_type,
493  s->spatial_decomposition_count
494  );
495 
496  av_assert0(!s->avmv);
497  if (s->avctx->export_side_data & AV_CODEC_EXPORT_DATA_MVS) {
498  s->avmv = av_malloc_array(s->b_width * s->b_height, sizeof(AVMotionVector) << (s->block_max_depth*2));
499  }
500  s->avmv_index = 0;
501 
502  if ((res = decode_blocks(s)) < 0)
503  return res;
504 
505  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
506  Plane *p= &s->plane[plane_index];
507  int w= p->width;
508  int h= p->height;
509  int x, y;
510  int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
511 
512  if(s->avctx->debug&2048){
513  memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
514  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
515 
516  for(y=0; y<h; y++){
517  for(x=0; x<w; x++){
518  int v= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x];
519  s->mconly_picture->data[plane_index][y*s->mconly_picture->linesize[plane_index] + x]= v;
520  }
521  }
522  }
523 
524  for(level=0; level<s->spatial_decomposition_count; level++){
525  for(orientation=level ? 1 : 0; orientation<4; orientation++){
526  SubBand *b= &p->band[level][orientation];
527  unpack_coeffs(s, b, b->parent, orientation);
528  }
529  }
530 
531  {
532  const int mb_h= s->b_height << s->block_max_depth;
533  const int block_size = MB_SIZE >> s->block_max_depth;
534  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
535  int mb_y;
537  int yd=0, yq=0;
538  int y;
539  int end_y;
540 
541  ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
542  for(mb_y=0; mb_y<=mb_h; mb_y++){
543 
544  int slice_starty = block_h*mb_y;
545  int slice_h = block_h*(mb_y+1);
546 
547  if (!(s->keyframe || s->avctx->debug&512)){
548  slice_starty = FFMAX(0, slice_starty - (block_h >> 1));
549  slice_h -= (block_h >> 1);
550  }
551 
552  for(level=0; level<s->spatial_decomposition_count; level++){
553  for(orientation=level ? 1 : 0; orientation<4; orientation++){
554  SubBand *b= &p->band[level][orientation];
555  int start_y;
556  int end_y;
557  int our_mb_start = mb_y;
558  int our_mb_end = (mb_y + 1);
559  const int extra= 3;
560  start_y = (mb_y ? ((block_h * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
561  end_y = (((block_h * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
562  if (!(s->keyframe || s->avctx->debug&512)){
563  start_y = FFMAX(0, start_y - (block_h >> (1+s->spatial_decomposition_count - level)));
564  end_y = FFMAX(0, end_y - (block_h >> (1+s->spatial_decomposition_count - level)));
565  }
566  start_y = FFMIN(b->height, start_y);
567  end_y = FFMIN(b->height, end_y);
568 
569  if (start_y != end_y){
570  if (orientation == 0){
571  SubBand * correlate_band = &p->band[0][0];
572  int correlate_end_y = FFMIN(b->height, end_y + 1);
573  int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
574  decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
575  correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
576  dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y);
577  }
578  else
579  decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
580  }
581  }
582  }
583 
584  for(; yd<slice_h; yd+=4){
585  ff_spatial_idwt_buffered_slice(&s->dwt, cs, &s->sb, s->temp_idwt_buffer, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
586  }
587 
588  if(s->qlog == LOSSLESS_QLOG){
589  for(; yq<slice_h && yq<h; yq++){
590  IDWTELEM * line = slice_buffer_get_line(&s->sb, yq);
591  for(x=0; x<w; x++){
592  line[x] *= 1<<FRAC_BITS;
593  }
594  }
595  }
596 
597  predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y);
598 
599  y = FFMIN(p->height, slice_starty);
600  end_y = FFMIN(p->height, slice_h);
601  while(y < end_y)
602  ff_slice_buffer_release(&s->sb, y++);
603  }
604 
605  ff_slice_buffer_flush(&s->sb);
606  }
607 
608  }
609 
610  emms_c();
611 
612  ff_snow_release_buffer(avctx);
613 
614  if(!(s->avctx->debug&2048))
615  res = av_frame_ref(picture, s->current_picture);
616  else
617  res = av_frame_ref(picture, s->mconly_picture);
618  if (res >= 0 && s->avmv_index) {
619  AVFrameSideData *sd;
620 
621  sd = av_frame_new_side_data(picture, AV_FRAME_DATA_MOTION_VECTORS, s->avmv_index * sizeof(AVMotionVector));
622  if (!sd)
623  return AVERROR(ENOMEM);
624  memcpy(sd->data, s->avmv, s->avmv_index * sizeof(AVMotionVector));
625  }
626 
627  av_freep(&s->avmv);
628 
629  if (res < 0)
630  return res;
631 
632  *got_frame = 1;
633 
634  bytes_read= c->bytestream - c->bytestream_start;
635  if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
636 
637  return bytes_read;
638 }
639 
641 {
642  SnowContext *s = avctx->priv_data;
643 
645 
647 
648  return 0;
649 }
650 
652  .name = "snow",
653  .long_name = NULL_IF_CONFIG_SMALL("Snow"),
654  .type = AVMEDIA_TYPE_VIDEO,
655  .id = AV_CODEC_ID_SNOW,
656  .priv_data_size = sizeof(SnowContext),
658  .close = decode_end,
659  .decode = decode_frame,
660  .capabilities = AV_CODEC_CAP_DR1 /*| AV_CODEC_CAP_DRAW_HORIZ_BAND*/,
661  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
663 };
#define U(x)
Definition: vp56_arith.h:37
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
Definition: asfcrypt.c:35
#define av_always_inline
Definition: attributes.h:45
#define av_cold
Definition: attributes.h:88
uint8_t
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
Libavcodec external API header.
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:1624
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:264
#define s(width, name)
Definition: cbs_vp9.c:257
#define MB_SIZE
Definition: cinepakenc.c:54
#define FFMIN(a, b)
Definition: common.h:105
#define av_clip
Definition: common.h:122
#define FFMAX(a, b)
Definition: common.h:103
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
int DWTELEM
Definition: dirac_dwt.h:26
#define MAX_DECOMPOSITIONS
Definition: dirac_dwt.h:30
short IDWTELEM
Definition: dirac_dwt.h:27
static float add(float src0, float src1)
static const double htaps[HTAPS]
The 2nd half (48 coeffs) of a 96-tap symmetric lowpass filter.
Definition: dsd_tablegen.h:55
int
static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed)
Definition: ffv1dec.c:65
#define FRAC_BITS
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
#define AV_CODEC_EXPORT_DATA_MVS
Export motion vectors through frame side data.
Definition: avcodec.h:403
@ AV_CODEC_ID_SNOW
Definition: codec_id.h:262
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AVERROR(e)
Definition: error.h:43
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:443
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, buffer_size_t size)
Add a new side data to a frame.
Definition: frame.c:726
@ AV_FRAME_DATA_MOTION_VECTORS
Motion vectors exported by some codecs (on demand through the export_mvs flag set in the libavcodec A...
Definition: frame.h:96
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:274
@ AV_PICTURE_TYPE_P
Predicted.
Definition: avutil.h:275
int index
Definition: gxfenc.c:89
cl_device_type type
int i
Definition: input.c:407
#define av_log2
Definition: intmath.h:83
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1390
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:41
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:49
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
#define emms_c()
Definition: internal.h:54
uint8_t w
Definition: llviddspenc.c:39
int stride
Definition: mace.c:144
#define mid_pred
Definition: mathops.h:97
mpegvideo header.
const char data[16]
Definition: mxf.c:142
AVOptions.
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:74
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
av_cold void ff_init_range_decoder(RangeCoder *c, const uint8_t *buf, int buf_size)
Definition: rangecoder.c:53
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
Definition: rangecoder.c:68
Range coder.
static int get_rac(RangeCoder *c, uint8_t *const state)
Definition: rangecoder.h:127
av_cold int ff_snow_common_init(AVCodecContext *avctx)
Definition: snow.c:439
void ff_snow_release_buffer(AVCodecContext *avctx)
Definition: snow.c:646
void ff_snow_reset_contexts(SnowContext *s)
Definition: snow.c:97
int ff_snow_common_init_after_header(AVCodecContext *avctx)
Definition: snow.c:521
int ff_snow_frame_start(SnowContext *s)
Definition: snow.c:661
av_cold void ff_snow_common_end(SnowContext *s)
Definition: snow.c:699
int ff_snow_alloc_blocks(SnowContext *s)
Definition: snow.c:111
#define QROOT
Definition: snow.h:44
static av_always_inline void predict_plane(SnowContext *s, IDWTELEM *buf, int plane_index, int add)
Definition: snow.h:455
#define MID_STATE
Definition: snow.h:40
#define QSHIFT
Definition: snow.h:43
#define QEXPSHIFT
Definition: snow.h:507
static void set_blocks(SnowContext *s, int level, int x, int y, int l, int cb, int cr, int mx, int my, int ref, int type)
Definition: snow.h:462
static void unpack_coeffs(SnowContext *s, SubBand *b, SubBand *parent, int orientation)
Definition: snow.h:603
const uint8_t *const ff_obmc_tab[4]
Definition: snowdata.h:123
uint8_t ff_qexp[QROOT]
Definition: snowdata.h:128
#define HTAPS_MAX
Definition: snow.h:76
#define BLOCK_INTRA
Intra block, inter otherwise.
Definition: snow.h:58
#define LOSSLESS_QLOG
Definition: snow.h:45
#define QBIAS_SHIFT
Definition: snow.h:164
#define MAX_REF_FRAMES
Definition: snow.h:47
static av_always_inline void add_yblock(SnowContext *s, int sliced, slice_buffer *sb, IDWTELEM *dst, uint8_t *dst8, const uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int offset_dst, int plane_index)
Definition: snow.h:280
static const BlockNode null_block
Definition: snow.h:64
void ff_slice_buffer_release(slice_buffer *buf, int line)
Definition: snow_dwt.c:78
void ff_spatial_idwt_buffered_slice(SnowDWTContext *dsp, DWTCompose *cs, slice_buffer *slice_buf, IDWTELEM *temp, int width, int height, int stride_line, int type, int decomposition_count, int y)
Definition: snow_dwt.c:658
void ff_slice_buffer_flush(slice_buffer *buf)
Definition: snow_dwt.c:91
int ff_slice_buffer_init(slice_buffer *buf, int line_count, int max_allocated_lines, int line_width, IDWTELEM *base_buffer)
Definition: snow_dwt.c:28
void ff_spatial_idwt_buffered_init(DWTCompose *cs, slice_buffer *sb, int width, int height, int stride_line, int type, int decomposition_count)
Definition: snow_dwt.c:639
void ff_slice_buffer_destroy(slice_buffer *buf)
Definition: snow_dwt.c:103
#define slice_buffer_get_line(slice_buf, line_num)
Definition: snow_dwt.h:89
AVCodec ff_snow_decoder
Definition: snowdec.c:651
static void decode_qlogs(SnowContext *s)
Definition: snowdec.c:278
static int decode_blocks(SnowContext *s)
Definition: snowdec.c:425
static int decode_header(SnowContext *s)
Definition: snowdec.c:302
static void correlate_slice_buffered(SnowContext *s, slice_buffer *sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y)
Definition: snowdec.c:248
#define GET_S(dst, check)
Definition: snowdec.c:294
static av_cold int decode_end(AVCodecContext *avctx)
Definition: snowdec.c:640
static int decode_q_branch(SnowContext *s, int level, int x, int y)
Definition: snowdec.c:158
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: snowdec.c:442
static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer *sb, IDWTELEM *old_buffer, int plane_index, int add, int mb_y)
Definition: snowdec.c:35
static void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer *sb, int start_y, int h, int save_state[1])
Definition: snowdec.c:117
static void dequantize_slice_buffered(SnowContext *s, slice_buffer *sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y)
Definition: snowdec.c:225
main external API structure.
Definition: avcodec.h:536
int debug
debug
Definition: avcodec.h:1623
void * priv_data
Definition: avcodec.h:563
AVCodec.
Definition: codec.h:197
const char * name
Name of the codec implementation.
Definition: codec.h:204
Structure to hold side data for an AVFrame.
Definition: frame.h:220
uint8_t * data
Definition: frame.h:222
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
int32_t source
Where the current macroblock comes from; negative value when it comes from the past,...
Definition: motion_vector.h:30
int32_t motion_y
Definition: motion_vector.h:53
int16_t dst_x
Absolute destination position.
Definition: motion_vector.h:42
uint64_t flags
Extra flag information.
Definition: motion_vector.h:47
uint16_t motion_scale
Definition: motion_vector.h:54
int32_t motion_x
Motion vector src_x = dst_x + motion_x / motion_scale src_y = dst_y + motion_y / motion_scale.
Definition: motion_vector.h:53
uint8_t w
Width and height of the block.
Definition: motion_vector.h:34
int16_t src_x
Absolute source position.
Definition: motion_vector.h:38
This structure stores compressed data.
Definition: packet.h:346
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
Definition: snow.h:51
uint8_t ref
Reference frame index.
Definition: snow.h:54
int16_t mx
Motion vector component X, see mv_scale.
Definition: snow.h:52
uint8_t color[3]
Color for intra.
Definition: snow.h:55
int16_t my
Motion vector component Y, see mv_scale.
Definition: snow.h:53
uint8_t type
Bitfield of BLOCK_*.
Definition: snow.h:56
uint8_t level
Definition: snow.h:61
Definition: cfhd.h:120
SubBand band[DWT_LEVELS_3D][4]
Definition: cfhd.h:133
int htaps
Definition: snow.h:104
int width
Definition: cfhd.h:121
int height
Definition: cfhd.h:122
int fast_mc
Definition: snow.h:107
int8_t hcoeff[HTAPS_MAX/2]
Definition: snow.h:105
int diag_mc
Definition: snow.h:106
Definition: cfhd.h:111
ptrdiff_t stride
Definition: cfhd.h:112
uint8_t * ibuf
Definition: diracdec.c:99
Definition: graph2dot.c:48
Used to minimize the amount of memory used in order to optimize cache performance.
Definition: snow_dwt.h:44
IDWTELEM ** line
For use by idwt and predict_slices.
Definition: snow_dwt.h:45
uint8_t level
Definition: svq3.c:206
#define av_malloc_array(a, b)
#define av_freep(p)
#define av_log(a,...)
static uint8_t tmp[11]
Definition: aes_ctr.c:27
#define src
Definition: vp8dsp.c:255
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
#define width
const char * b
Definition: vf_curves.c:118
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:216
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:215
static double c[64]