201 unsigned long dest_len = uncompressed_size;
203 if (uncompress(
td->tmp, &dest_len,
src, compressed_size) != Z_OK ||
204 dest_len != uncompressed_size)
209 s->dsp.predictor(
td->tmp, uncompressed_size);
210 s->dsp.reorder_pixels(
td->uncompressed_data,
td->tmp, uncompressed_size);
216 int compressed_size,
int uncompressed_size)
219 const int8_t *
s =
src;
220 int ssize = compressed_size;
221 int dsize = uncompressed_size;
231 if ((dsize -= count) < 0 ||
232 (ssize -= count + 1) < 0)
240 if ((dsize -= count) < 0 ||
260 rle(
td->tmp,
src, compressed_size, uncompressed_size);
264 ctx->dsp.predictor(
td->tmp, uncompressed_size);
265 ctx->dsp.reorder_pixels(
td->uncompressed_data,
td->tmp, uncompressed_size);
270 #define USHORT_RANGE (1 << 16)
271 #define BITMAP_SIZE (1 << 13)
278 if ((
i == 0) || (bitmap[
i >> 3] & (1 << (
i & 7))))
288 static void apply_lut(
const uint16_t *lut, uint16_t *dst,
int dsize)
292 for (
i = 0;
i < dsize; ++
i)
293 dst[
i] = lut[dst[
i]];
296 #define HUF_ENCBITS 16
297 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1)
301 uint64_t
c, n[59] = { 0 };
308 for (
i = 58;
i > 0; --
i) {
309 uint64_t nc = ((
c + n[
i]) >> 1);
318 freq[
i] = l | (n[l]++ << 6);
322 #define SHORT_ZEROCODE_RUN 59
323 #define LONG_ZEROCODE_RUN 63
324 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
325 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
335 for (;
im <= iM;
im++) {
341 if (
im + zerun > iM + 1)
351 if (
im + zerun > iM + 1)
373 for (
int i =
im;
i < iM;
i++) {
375 td->he[j].len =
td->freq[
i] & 63;
376 td->he[j].code =
td->freq[
i] >> 6;
377 if (
td->he[j].len > 32) {
381 if (
td->he[j].len > 0)
392 if (
td->run_sym == -1) {
397 td->he[j].sym =
td->run_sym;
398 td->he[j].len =
td->freq[iM] & 63;
399 if (
td->he[j].len > 32) {
403 td->he[j].code =
td->freq[iM] >> 6;
408 &
td->he[0].len,
sizeof(
td->he[0]),
sizeof(
td->he[0].len),
409 &
td->he[0].code,
sizeof(
td->he[0]),
sizeof(
td->he[0].code),
410 &
td->he[0].sym,
sizeof(
td->he[0]),
sizeof(
td->he[0].sym), 0);
414 int no, uint16_t *
out)
427 if (oe == 0 || oe +
run > no)
445 uint16_t *dst,
int dst_size)
451 im = bytestream2_get_le32(gb);
452 iM = bytestream2_get_le32(gb);
454 nBits = bytestream2_get_le32(gb);
465 if (!
td->freq || !
td->he) {
481 return huf_decode(&
td->vlc, gb, nBits,
td->run_sym, dst_size, dst);
484 static inline void wdec14(uint16_t l, uint16_t
h, uint16_t *
a, uint16_t *
b)
489 int ai = ls + (hi & 1) + (hi >> 1);
491 int16_t bs = ai - hi;
498 #define A_OFFSET (1 << (NBITS - 1))
499 #define MOD_MASK ((1 << NBITS) - 1)
501 static inline void wdec16(uint16_t l, uint16_t
h, uint16_t *
a, uint16_t *
b)
512 int ny,
int oy, uint16_t mx)
514 int w14 = (mx < (1 << 14));
515 int n = (nx > ny) ? ny : nx;
528 uint16_t *ey =
in + oy * (ny - p2);
529 uint16_t i00, i01, i10, i11;
535 for (; py <= ey; py += oy2) {
537 uint16_t *ex = py + ox * (nx - p2);
539 for (; px <= ex; px += ox2) {
540 uint16_t *p01 = px + ox1;
541 uint16_t *p10 = px + oy1;
542 uint16_t *p11 = p10 + ox1;
545 wdec14(*px, *p10, &i00, &i10);
546 wdec14(*p01, *p11, &i01, &i11);
547 wdec14(i00, i01, px, p01);
548 wdec14(i10, i11, p10, p11);
550 wdec16(*px, *p10, &i00, &i10);
551 wdec16(*p01, *p11, &i01, &i11);
552 wdec16(i00, i01, px, p01);
553 wdec16(i10, i11, p10, p11);
558 uint16_t *p10 = px + oy1;
561 wdec14(*px, *p10, &i00, p10);
563 wdec16(*px, *p10, &i00, p10);
571 uint16_t *ex = py + ox * (nx - p2);
573 for (; px <= ex; px += ox2) {
574 uint16_t *p01 = px + ox1;
577 wdec14(*px, *p01, &i00, p01);
579 wdec16(*px, *p01, &i00, p01);
594 uint16_t maxval, min_non_zero, max_non_zero;
596 uint16_t *
tmp = (uint16_t *)
td->tmp;
608 if (!
td->bitmap || !
td->lut) {
615 min_non_zero = bytestream2_get_le16(&gb);
616 max_non_zero = bytestream2_get_le16(&gb);
622 if (min_non_zero <= max_non_zero)
624 max_non_zero - min_non_zero + 1);
625 memset(
td->bitmap + max_non_zero + 1, 0,
BITMAP_SIZE - max_non_zero - 1);
635 for (
i = 0;
i <
s->nb_channels;
i++) {
643 for (j = 0; j < pixel_half_size; j++)
645 td->xsize * pixel_half_size, maxval);
646 ptr +=
td->xsize *
td->ysize * pixel_half_size;
651 out = (uint16_t *)
td->uncompressed_data;
654 for (j = 0; j <
s->nb_channels; j++) {
661 in =
tmp + tmp_offset *
td->xsize *
td->ysize +
i *
td->xsize * pixel_half_size;
662 tmp_offset += pixel_half_size;
665 s->bbdsp.bswap16_buf(
out,
in,
td->xsize * pixel_half_size);
667 memcpy(
out,
in,
td->xsize * 2 * pixel_half_size);
669 out +=
td->xsize * pixel_half_size;
677 int compressed_size,
int uncompressed_size,
680 unsigned long dest_len, expected_len = 0;
685 for (
i = 0;
i <
s->nb_channels;
i++) {
687 expected_len += (
td->xsize *
td->ysize * 3);
688 }
else if (
s->channels[
i].pixel_type ==
EXR_HALF) {
689 expected_len += (
td->xsize *
td->ysize * 2);
691 expected_len += (
td->xsize *
td->ysize * 4);
695 dest_len = expected_len;
697 if (uncompress(
td->tmp, &dest_len,
src, compressed_size) != Z_OK) {
699 }
else if (dest_len != expected_len) {
703 out =
td->uncompressed_data;
704 for (
i = 0;
i <
td->ysize;
i++)
705 for (
c = 0;
c <
s->nb_channels;
c++) {
713 ptr[1] = ptr[0] +
td->xsize;
714 ptr[2] = ptr[1] +
td->xsize;
715 in = ptr[2] +
td->xsize;
717 for (j = 0; j <
td->xsize; ++j) {
718 uint32_t
diff = ((unsigned)*(ptr[0]++) << 24) |
719 (*(ptr[1]++) << 16) |
727 ptr[1] = ptr[0] +
td->xsize;
728 in = ptr[1] +
td->xsize;
729 for (j = 0; j <
td->xsize; j++) {
730 uint32_t
diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
738 ptr[1] = ptr[0] +
s->xdelta;
739 ptr[2] = ptr[1] +
s->xdelta;
740 ptr[3] = ptr[2] +
s->xdelta;
741 in = ptr[3] +
s->xdelta;
743 for (j = 0; j <
s->xdelta; ++j) {
744 uint32_t
diff = ((uint32_t)*(ptr[0]++) << 24) |
745 (*(ptr[1]++) << 16) |
746 (*(ptr[2]++) << 8 ) |
762 unsigned short shift = (
b[ 2] >> 2) & 15;
763 unsigned short bias = (0x20 <<
shift);
766 s[ 0] = (
b[0] << 8) |
b[1];
768 s[ 4] =
s[ 0] + ((((
b[ 2] << 4) | (
b[ 3] >> 4)) & 0x3f) <<
shift) - bias;
769 s[ 8] =
s[ 4] + ((((
b[ 3] << 2) | (
b[ 4] >> 6)) & 0x3f) <<
shift) - bias;
770 s[12] =
s[ 8] + ((
b[ 4] & 0x3f) <<
shift) - bias;
772 s[ 1] =
s[ 0] + ((
b[ 5] >> 2) <<
shift) - bias;
773 s[ 5] =
s[ 4] + ((((
b[ 5] << 4) | (
b[ 6] >> 4)) & 0x3f) <<
shift) - bias;
774 s[ 9] =
s[ 8] + ((((
b[ 6] << 2) | (
b[ 7] >> 6)) & 0x3f) <<
shift) - bias;
775 s[13] =
s[12] + ((
b[ 7] & 0x3f) <<
shift) - bias;
777 s[ 2] =
s[ 1] + ((
b[ 8] >> 2) <<
shift) - bias;
778 s[ 6] =
s[ 5] + ((((
b[ 8] << 4) | (
b[ 9] >> 4)) & 0x3f) <<
shift) - bias;
779 s[10] =
s[ 9] + ((((
b[ 9] << 2) | (
b[10] >> 6)) & 0x3f) <<
shift) - bias;
780 s[14] =
s[13] + ((
b[10] & 0x3f) <<
shift) - bias;
782 s[ 3] =
s[ 2] + ((
b[11] >> 2) <<
shift) - bias;
783 s[ 7] =
s[ 6] + ((((
b[11] << 4) | (
b[12] >> 4)) & 0x3f) <<
shift) - bias;
784 s[11] =
s[10] + ((((
b[12] << 2) | (
b[13] >> 6)) & 0x3f) <<
shift) - bias;
785 s[15] =
s[14] + ((
b[13] & 0x3f) <<
shift) - bias;
787 for (
i = 0;
i < 16; ++
i) {
799 s[0] = (
b[0] << 8) |
b[1];
806 for (
i = 1;
i < 16;
i++)
813 const int8_t *sr =
src;
814 int stay_to_uncompress = compressed_size;
815 int nb_b44_block_w, nb_b44_block_h;
816 int index_tl_x, index_tl_y, index_out, index_tmp;
817 uint16_t tmp_buffer[16];
819 int target_channel_offset = 0;
822 nb_b44_block_w =
td->xsize / 4;
823 if ((
td->xsize % 4) != 0)
826 nb_b44_block_h =
td->ysize / 4;
827 if ((
td->ysize % 4) != 0)
830 for (
c = 0;
c <
s->nb_channels;
c++) {
832 for (iY = 0; iY < nb_b44_block_h; iY++) {
833 for (iX = 0; iX < nb_b44_block_w; iX++) {
834 if (stay_to_uncompress < 3) {
839 if (
src[compressed_size - stay_to_uncompress + 2] == 0xfc) {
842 stay_to_uncompress -= 3;
844 if (stay_to_uncompress < 14) {
850 stay_to_uncompress -= 14;
857 for (y = index_tl_y; y <
FFMIN(index_tl_y + 4,
td->ysize); y++) {
858 for (x = index_tl_x; x <
FFMIN(index_tl_x + 4,
td->xsize); x++) {
859 index_out = target_channel_offset *
td->xsize + y *
td->channel_line_size + 2 * x;
860 index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
861 td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
862 td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
867 target_channel_offset += 2;
869 if (stay_to_uncompress < td->ysize *
td->xsize * 4) {
874 for (y = 0; y <
td->ysize; y++) {
875 index_out = target_channel_offset *
td->xsize + y *
td->channel_line_size;
876 memcpy(&
td->uncompressed_data[index_out], sr,
td->xsize * 4);
879 target_channel_offset += 4;
881 stay_to_uncompress -=
td->ysize *
td->xsize * 4;
897 }
else if ((
val >> 8) == 0xff) {
915 const float b = .5f *
cosf(
M_PI / 16.f);
917 const float d = .5f *
cosf(3.f*
M_PI / 16.f);
918 const float e = .5f *
cosf(5.f*
M_PI / 16.f);
919 const float f = .5f *
cosf(3.f*
M_PI / 8.f);
920 const float g = .5f *
cosf(7.f*
M_PI / 16.f);
922 float alpha[4], beta[4], theta[4], gamma[4];
929 beta[0] =
b *
blk[1 * step] + d *
blk[3 * step] + e *
blk[5 * step] +
g *
blk[7 * step];
930 beta[1] = d *
blk[1 * step] -
g *
blk[3 * step] -
b *
blk[5 * step] - e *
blk[7 * step];
931 beta[2] = e *
blk[1 * step] -
b *
blk[3 * step] +
g *
blk[5 * step] + d *
blk[7 * step];
932 beta[3] =
g *
blk[1 * step] - e *
blk[3 * step] + d *
blk[5 * step] -
b *
blk[7 * step];
934 theta[0] =
a * (
blk[0 * step] +
blk[4 * step]);
935 theta[3] =
a * (
blk[0 * step] -
blk[4 * step]);
940 gamma[0] = theta[0] + theta[1];
941 gamma[1] = theta[3] + theta[2];
942 gamma[2] = theta[3] - theta[2];
943 gamma[3] = theta[0] - theta[1];
945 blk[0 * step] = gamma[0] + beta[0];
946 blk[1 * step] = gamma[1] + beta[1];
947 blk[2 * step] = gamma[2] + beta[2];
948 blk[3 * step] = gamma[3] + beta[3];
950 blk[4 * step] = gamma[3] - beta[3];
951 blk[5 * step] = gamma[2] - beta[2];
952 blk[6 * step] = gamma[1] - beta[1];
953 blk[7 * step] = gamma[0] - beta[0];
958 for (
int i = 0;
i < 8;
i++)
961 for (
int i = 0;
i < 8;
i++) {
968 float *
b,
float *
g,
float *
r)
970 *
r = y + 1.5747f * v;
971 *
g = y - 0.1873f *
u - 0.4682f * v;
972 *
b = y + 1.8556f *
u;
982 const float log_base =
expf(2.2f * scale);
991 int64_t
version, lo_usize, lo_size;
992 int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
993 int64_t ac_count, dc_count, ac_compression;
994 const int dc_w =
td->xsize >> 3;
995 const int dc_h =
td->ysize >> 3;
999 if (compressed_size <= 88)
1017 if (compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize)
1021 skip = bytestream2_get_le16(&gb);
1028 if (lo_usize > uncompressed_size)
1034 unsigned long dest_len = ac_count * 2LL;
1037 if (ac_count > 3LL *
td->xsize *
s->scan_lines_per_block)
1044 switch (ac_compression) {
1051 if (uncompress(
td->ac_data, &dest_len, agb.
buffer, ac_size) != Z_OK ||
1052 dest_len != ac_count * 2LL)
1063 unsigned long dest_len = dc_count * 2LL;
1066 if (dc_count > (6LL *
td->xsize *
td->ysize + 63) / 64)
1073 if (uncompress(
td->dc_data +
FFALIGN(dest_len, 64), &dest_len, agb.
buffer, dc_size) != Z_OK ||
1074 (dest_len != dc_count * 2LL))
1077 s->dsp.predictor(
td->dc_data +
FFALIGN(dest_len, 64), dest_len);
1078 s->dsp.reorder_pixels(
td->dc_data,
td->dc_data +
FFALIGN(dest_len, 64), dest_len);
1083 if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
1084 unsigned long dest_len = rle_usize;
1091 if (!
td->rle_raw_data)
1094 if (uncompress(
td->rle_data, &dest_len, gb.
buffer, rle_csize) != Z_OK ||
1095 (dest_len != rle_usize))
1098 ret =
rle(
td->rle_raw_data,
td->rle_data, rle_usize, rle_raw_size);
1106 for (
int y = 0; y <
td->ysize; y += 8) {
1107 for (
int x = 0; x <
td->xsize; x += 8) {
1108 memset(
td->block, 0,
sizeof(
td->block));
1110 for (
int j = 0; j < 3; j++) {
1112 const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
1113 uint16_t *
dc = (uint16_t *)
td->dc_data;
1117 s->exponenttable,
s->offsettable);
1119 block[0] = dc_val.f;
1125 const float scale =
s->pixel_type ==
EXR_FLOAT ? 2.f : 1.f;
1126 const int o =
s->nb_channels == 4;
1127 float *bo = ((
float *)
td->uncompressed_data) +
1128 y *
td->xsize *
s->nb_channels +
td->xsize * (o + 0) + x;
1129 float *go = ((
float *)
td->uncompressed_data) +
1130 y *
td->xsize *
s->nb_channels +
td->xsize * (o + 1) + x;
1131 float *ro = ((
float *)
td->uncompressed_data) +
1132 y *
td->xsize *
s->nb_channels +
td->xsize * (o + 2) + x;
1133 float *yb =
td->block[0];
1134 float *
ub =
td->block[1];
1135 float *vb =
td->block[2];
1137 for (
int yy = 0; yy < 8; yy++) {
1138 for (
int xx = 0; xx < 8; xx++) {
1139 const int idx = xx + yy * 8;
1141 convert(yb[idx],
ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
1148 bo +=
td->xsize *
s->nb_channels;
1149 go +=
td->xsize *
s->nb_channels;
1150 ro +=
td->xsize *
s->nb_channels;
1156 if (
s->nb_channels < 4)
1159 for (
int y = 0; y <
td->ysize &&
td->rle_raw_data; y++) {
1160 uint32_t *ao = ((uint32_t *)
td->uncompressed_data) + y *
td->xsize *
s->nb_channels;
1162 uint8_t *ai1 =
td->rle_raw_data + y *
td->xsize + rle_raw_size / 2;
1164 for (
int x = 0; x <
td->xsize; x++) {
1165 uint16_t ha = ai0[x] | (ai1[x] << 8);
1167 ao[x] =
half2float(ha,
s->mantissatable,
s->exponenttable,
s->offsettable);
1175 int jobnr,
int threadnr)
1180 const uint8_t *channel_buffer[4] = { 0 };
1182 uint64_t line_offset, uncompressed_size;
1186 uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1189 int bxmin = 0, axmax = 0, window_xoffset = 0;
1190 int window_xmin, window_xmax, window_ymin, window_ymax;
1191 int data_xoffset, data_yoffset, data_window_offset, xsize, ysize;
1192 int i, x, buf_size =
s->buf_size;
1193 int c, rgb_channel_count;
1194 float one_gamma = 1.0f /
s->gamma;
1198 line_offset =
AV_RL64(
s->gb.buffer + jobnr * 8);
1201 if (buf_size < 20 || line_offset > buf_size - 20)
1204 src = buf + line_offset + 20;
1205 if (
s->is_multipart)
1214 if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1217 if (tile_level_x || tile_level_y) {
1222 if (tile_x &&
s->tile_attr.xSize + (int64_t)
FFMAX(
s->xmin, 0) >= INT_MAX / tile_x )
1224 if (tile_y &&
s->tile_attr.ySize + (int64_t)
FFMAX(
s->ymin, 0) >= INT_MAX / tile_y )
1227 line =
s->ymin +
s->tile_attr.ySize * tile_y;
1228 col =
s->tile_attr.xSize * tile_x;
1231 s->xmin + col < s->xmin ||
s->xmin + col >
s->xmax)
1234 td->ysize =
FFMIN(
s->tile_attr.ySize,
s->ydelta - tile_y *
s->tile_attr.ySize);
1235 td->xsize =
FFMIN(
s->tile_attr.xSize,
s->xdelta - tile_x *
s->tile_attr.xSize);
1237 if (
td->xsize * (uint64_t)
s->current_channel_offset > INT_MAX)
1240 td->channel_line_size =
td->xsize *
s->current_channel_offset;
1241 uncompressed_size =
td->channel_line_size * (uint64_t)
td->ysize;
1243 if (buf_size < 8 || line_offset > buf_size - 8)
1246 src = buf + line_offset + 8;
1247 if (
s->is_multipart)
1255 if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1258 td->ysize =
FFMIN(
s->scan_lines_per_block,
s->ymax -
line + 1);
1259 td->xsize =
s->xdelta;
1261 if (
td->xsize * (uint64_t)
s->current_channel_offset > INT_MAX)
1264 td->channel_line_size =
td->xsize *
s->current_channel_offset;
1265 uncompressed_size =
td->channel_line_size * (uint64_t)
td->ysize;
1267 if ((
s->compression ==
EXR_RAW && (data_size != uncompressed_size ||
1268 line_offset > buf_size - uncompressed_size)) ||
1269 (
s->compression !=
EXR_RAW && (data_size > uncompressed_size ||
1270 line_offset > buf_size - data_size))) {
1279 xsize = window_xmax - window_xmin;
1280 ysize = window_ymax - window_ymin;
1283 if (xsize <= 0 || ysize <= 0)
1290 window_xoffset =
FFMAX(0,
s->xmin);
1292 bxmin = window_xoffset * step;
1296 if(col +
td->xsize ==
s->xdelta) {
1297 window_xmax = avctx->
width;
1299 axmax =
FFMAX(0, (avctx->
width - (
s->xmax + 1))) * step;
1302 if (data_size < uncompressed_size || s->is_tile) {
1308 if (data_size < uncompressed_size) {
1310 &
td->uncompressed_size, uncompressed_size + 64);
1312 if (!
td->uncompressed_data)
1316 switch (
s->compression) {
1343 src =
td->uncompressed_data;
1349 data_window_offset = (data_yoffset *
td->channel_line_size) + data_xoffset;
1352 channel_buffer[0] =
src + (
td->xsize *
s->channel_offsets[0]) + data_window_offset;
1353 channel_buffer[1] =
src + (
td->xsize *
s->channel_offsets[1]) + data_window_offset;
1354 channel_buffer[2] =
src + (
td->xsize *
s->channel_offsets[2]) + data_window_offset;
1355 rgb_channel_count = 3;
1357 channel_buffer[0] =
src + (
td->xsize *
s->channel_offsets[1]) + data_window_offset;
1358 rgb_channel_count = 1;
1360 if (
s->channel_offsets[3] >= 0)
1361 channel_buffer[3] =
src + (
td->xsize *
s->channel_offsets[3]) + data_window_offset;
1365 int channel_count =
s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1367 channel_buffer[1] = channel_buffer[0];
1368 channel_buffer[2] = channel_buffer[0];
1371 for (
c = 0;
c < channel_count;
c++) {
1372 int plane =
s->desc->comp[
c].plane;
1373 ptr = p->
data[plane] + window_ymin * p->
linesize[plane] + (window_xmin * 4);
1375 for (
i = 0;
i < ysize;
i++, ptr += p->
linesize[plane]) {
1379 src = channel_buffer[
c];
1383 memset(ptr_x, 0, bxmin);
1384 ptr_x += window_xoffset;
1391 if (trc_func &&
c < 3) {
1392 for (x = 0; x < xsize; x++) {
1393 t.
i = bytestream_get_le32(&
src);
1394 t.
f = trc_func(t.
f);
1397 }
else if (one_gamma != 1.f) {
1398 for (x = 0; x < xsize; x++) {
1399 t.
i = bytestream_get_le32(&
src);
1400 if (t.
f > 0.0f &&
c < 3)
1401 t.
f =
powf(t.
f, one_gamma);
1405 for (x = 0; x < xsize; x++) {
1406 t.
i = bytestream_get_le32(&
src);
1412 if (
c < 3 || !trc_func) {
1413 for (x = 0; x < xsize; x++) {
1414 *ptr_x++ =
s->gamma_table[bytestream_get_le16(&
src)];
1417 for (x = 0; x < xsize; x++) {
1428 memset(ptr_x, 0, axmax);
1429 channel_buffer[
c] +=
td->channel_line_size;
1435 ptr = p->
data[0] + window_ymin * p->
linesize[0] + (window_xmin *
s->desc->nb_components * 2);
1437 for (
i = 0;
i < ysize;
i++, ptr += p->
linesize[0]) {
1443 for (
c = 0;
c < rgb_channel_count;
c++) {
1444 rgb[
c] = channel_buffer[
c];
1447 if (channel_buffer[3])
1448 a = channel_buffer[3];
1450 ptr_x = (uint16_t *) ptr;
1453 memset(ptr_x, 0, bxmin);
1454 ptr_x += window_xoffset *
s->desc->nb_components;
1456 for (x = 0; x < xsize; x++) {
1457 for (
c = 0;
c < rgb_channel_count;
c++) {
1458 *ptr_x++ = bytestream_get_le32(&
rgb[
c]) >> 16;
1461 if (channel_buffer[3])
1462 *ptr_x++ = bytestream_get_le32(&
a) >> 16;
1466 memset(ptr_x, 0, axmax);
1468 channel_buffer[0] +=
td->channel_line_size;
1469 channel_buffer[1] +=
td->channel_line_size;
1470 channel_buffer[2] +=
td->channel_line_size;
1471 if (channel_buffer[3])
1472 channel_buffer[3] +=
td->channel_line_size;
1484 if (!bytestream2_peek_byte(gb))
1488 for (
int i = 0;
i < 2;
i++)
1489 while (bytestream2_get_byte(gb) != 0);
1509 const char *value_name,
1510 const char *value_type,
1511 unsigned int minimum_length)
1517 !strcmp(gb->
buffer, value_name)) {
1519 gb->
buffer += strlen(value_name) + 1;
1520 if (!strcmp(gb->
buffer, value_type)) {
1521 gb->
buffer += strlen(value_type) + 1;
1522 var_size = bytestream2_get_le32(gb);
1528 gb->
buffer -= strlen(value_name) + 1;
1530 "Unknown data type %s for header variable %s.\n",
1531 value_type, value_name);
1543 int layer_match = 0;
1545 int dup_channels = 0;
1547 s->current_channel_offset = 0;
1554 s->channel_offsets[0] = -1;
1555 s->channel_offsets[1] = -1;
1556 s->channel_offsets[2] = -1;
1557 s->channel_offsets[3] = -1;
1563 s->tile_attr.xSize = -1;
1564 s->tile_attr.ySize = -1;
1566 s->is_multipart = 0;
1568 s->current_part = 0;
1575 magic_number = bytestream2_get_le32(gb);
1576 if (magic_number != 20000630) {
1583 version = bytestream2_get_byte(gb);
1589 flags = bytestream2_get_le24(gb);
1594 s->is_multipart = 1;
1604 while (
s->is_multipart &&
s->current_part <
s->selected_part &&
1606 if (bytestream2_peek_byte(gb)) {
1610 if (!bytestream2_peek_byte(gb))
1617 if (!bytestream2_peek_byte(gb)) {
1618 if (!
s->is_multipart)
1621 if (
s->current_part ==
s->selected_part) {
1623 if (bytestream2_peek_byte(gb)) {
1627 if (!bytestream2_peek_byte(gb))
1632 if (!bytestream2_peek_byte(gb))
1638 "chlist", 38)) >= 0) {
1650 int channel_index = -1;
1653 if (strcmp(
s->layer,
"") != 0) {
1654 if (strncmp(ch_gb.
buffer,
s->layer, strlen(
s->layer)) == 0) {
1657 "Channel match layer : %s.\n", ch_gb.
buffer);
1658 ch_gb.
buffer += strlen(
s->layer);
1659 if (*ch_gb.
buffer ==
'.')
1664 "Channel doesn't match layer : %s.\n", ch_gb.
buffer);
1692 "Unsupported channel %.256s.\n", ch_gb.
buffer);
1698 bytestream2_get_byte(&ch_gb))
1707 current_pixel_type = bytestream2_get_le32(&ch_gb);
1710 current_pixel_type);
1716 xsub = bytestream2_get_le32(&ch_gb);
1717 ysub = bytestream2_get_le32(&ch_gb);
1719 if (xsub != 1 || ysub != 1) {
1721 "Subsampling %dx%d",
1727 if (channel_index >= 0 &&
s->channel_offsets[channel_index] == -1) {
1729 s->pixel_type != current_pixel_type) {
1731 "RGB channels not of the same depth.\n");
1735 s->pixel_type = current_pixel_type;
1736 s->channel_offsets[channel_index] =
s->current_channel_offset;
1737 }
else if (channel_index >= 0) {
1739 "Multiple channels with index %d.\n", channel_index);
1740 if (++dup_channels > 10) {
1752 channel = &
s->channels[
s->nb_channels - 1];
1753 channel->pixel_type = current_pixel_type;
1757 if (current_pixel_type ==
EXR_HALF) {
1758 s->current_channel_offset += 2;
1760 s->current_channel_offset += 4;
1767 if (
FFMIN3(
s->channel_offsets[0],
1768 s->channel_offsets[1],
1769 s->channel_offsets[2]) < 0) {
1770 if (
s->channel_offsets[0] < 0)
1772 if (
s->channel_offsets[1] < 0)
1774 if (
s->channel_offsets[2] < 0)
1786 int xmin, ymin, xmax, ymax;
1792 xmin = bytestream2_get_le32(gb);
1793 ymin = bytestream2_get_le32(gb);
1794 xmax = bytestream2_get_le32(gb);
1795 ymax = bytestream2_get_le32(gb);
1797 if (xmin > xmax || ymin > ymax ||
1798 (
unsigned)xmax - xmin >= INT_MAX ||
1799 (
unsigned)ymax - ymin >= INT_MAX) {
1807 s->xdelta = (
s->xmax -
s->xmin) + 1;
1808 s->ydelta = (
s->ymax -
s->ymin) + 1;
1812 "box2i", 34)) >= 0) {
1820 sx = bytestream2_get_le32(gb);
1821 sy = bytestream2_get_le32(gb);
1822 dx = bytestream2_get_le32(gb);
1823 dy = bytestream2_get_le32(gb);
1830 "lineOrder", 25)) >= 0) {
1837 line_order = bytestream2_get_byte(gb);
1839 if (line_order > 2) {
1847 "float", 31)) >= 0) {
1853 s->sar = bytestream2_get_le32(gb);
1857 "compression", 29)) >= 0) {
1864 s->compression = bytestream2_get_byte(gb);
1868 "Found more than one compression attribute.\n");
1873 "tiledesc", 22)) >= 0) {
1878 "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1880 s->tile_attr.xSize = bytestream2_get_le32(gb);
1881 s->tile_attr.ySize = bytestream2_get_le32(gb);
1883 tileLevel = bytestream2_get_byte(gb);
1884 s->tile_attr.level_mode = tileLevel & 0x0f;
1885 s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1889 s->tile_attr.level_mode);
1896 s->tile_attr.level_round);
1903 "string", 1)) >= 0) {
1911 "rational", 33)) >= 0) {
1917 s->avctx->framerate.num = bytestream2_get_le32(gb);
1918 s->avctx->framerate.den = bytestream2_get_le32(gb);
1924 s->chunk_count = bytestream2_get_le32(gb);
1928 "string", 16)) >= 0) {
1932 if (strncmp(
"scanlineimage",
key, var_size) &&
1933 strncmp(
"tiledimage",
key, var_size))
1938 "preview", 16)) >= 0) {
1939 uint32_t pw = bytestream2_get_le32(gb);
1940 uint32_t ph = bytestream2_get_le32(gb);
1941 int64_t psize = 4LL * pw * ph;
1966 bytestream2_peek_byte(gb) &&
i < 255) {
1967 name[
i++] = bytestream2_get_byte(gb);
1973 bytestream2_peek_byte(gb) &&
i < 255) {
1974 type[
i++] = bytestream2_get_byte(gb);
1977 size = bytestream2_get_le32(gb);
1980 if (!strcmp(
type,
"string"))
1992 if (
s->tile_attr.xSize < 1 ||
s->tile_attr.ySize < 1) {
2024 int i, y, ret, ymax;
2028 uint64_t start_offset_table;
2029 uint64_t start_next_scanline;
2039 s->current_channel_offset *= 2;
2040 for (
int i = 0;
i < 4;
i++)
2041 s->channel_offsets[
i] *= 2;
2044 switch (
s->pixel_type) {
2047 if (
s->channel_offsets[3] >= 0) {
2063 if (
s->channel_offsets[3] >= 0) {
2085 switch (
s->compression) {
2089 s->scan_lines_per_block = 1;
2093 s->scan_lines_per_block = 16;
2099 s->scan_lines_per_block = 32;
2102 s->scan_lines_per_block = 256;
2111 if (
s->xmin >
s->xmax ||
s->ymin >
s->ymax ||
2112 s->ydelta == 0xFFFFFFFF ||
s->xdelta == 0xFFFFFFFF) {
2127 planes =
s->desc->nb_components;
2128 out_line_size = avctx->
width * 4;
2131 out_line_size = avctx->
width * 2 *
s->desc->nb_components;
2135 nb_blocks = ((
s->xdelta +
s->tile_attr.xSize - 1) /
s->tile_attr.xSize) *
2136 ((
s->ydelta +
s->tile_attr.ySize - 1) /
s->tile_attr.ySize);
2138 nb_blocks = (
s->ydelta +
s->scan_lines_per_block - 1) /
2139 s->scan_lines_per_block;
2149 if (!
s->is_tile && bytestream2_peek_le64(gb) == 0) {
2153 start_next_scanline = start_offset_table + nb_blocks * 8;
2156 for (y = 0; y < nb_blocks; y++) {
2158 bytestream2_put_le64(&offset_table_writer, start_next_scanline);
2162 start_next_scanline += (bytestream2_get_le32(gb) + 8);
2168 s->buf = avpkt->
data;
2169 s->buf_size = avpkt->
size;
2173 ptr = picture->
data[
i];
2174 for (y = 0; y <
FFMIN(
s->ymin,
s->h); y++) {
2175 memset(ptr, 0, out_line_size);
2180 s->picture = picture;
2184 ymax =
FFMAX(0,
s->ymax + 1);
2186 if (ymax < avctx->
height)
2189 for (y = ymax; y < avctx->
height; y++) {
2190 memset(ptr, 0, out_line_size);
2206 float one_gamma = 1.0f /
s->gamma;
2221 for (
i = 0;
i < 65536; ++
i) {
2222 t.
i =
half2float(
i,
s->mantissatable,
s->exponenttable,
s->offsettable);
2223 t.
f = trc_func(t.
f);
2224 s->gamma_table[
i] = t;
2227 if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
2228 for (
i = 0;
i < 65536; ++
i) {
2229 s->gamma_table[
i].i =
half2float(
i,
s->mantissatable,
s->exponenttable,
s->offsettable);
2232 for (
i = 0;
i < 65536; ++
i) {
2233 t.
i =
half2float(
i,
s->mantissatable,
s->exponenttable,
s->offsettable);
2236 s->gamma_table[
i] = t;
2238 t.
f =
powf(t.
f, one_gamma);
2239 s->gamma_table[
i] = t;
2247 if (!
s->thread_data)
2278 #define OFFSET(x) offsetof(EXRContext, x)
2279 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2281 {
"layer",
"Set the decoding layer",
OFFSET(layer),
2283 {
"part",
"Set the decoding part",
OFFSET(selected_part),
2285 {
"gamma",
"Set the float gamma value when decoding",
OFFSET(gamma),
2289 {
"apply_trc",
"color transfer characteristics to apply to EXR linear input",
OFFSET(apply_trc_type),
2291 {
"bt709",
"BT.709", 0,
2293 {
"gamma",
"gamma", 0,
2295 {
"gamma22",
"BT.470 M", 0,
2297 {
"gamma28",
"BT.470 BG", 0,
2299 {
"smpte170m",
"SMPTE 170 M", 0,
2301 {
"smpte240m",
"SMPTE 240 M", 0,
2303 {
"linear",
"Linear", 0,
2307 {
"log_sqrt",
"Log square root", 0,
2309 {
"iec61966_2_4",
"IEC 61966-2-4", 0,
2311 {
"bt1361",
"BT.1361", 0,
2313 {
"iec61966_2_1",
"IEC 61966-2-1", 0,
2315 {
"bt2020_10bit",
"BT.2020 - 10 bit", 0,
2317 {
"bt2020_12bit",
"BT.2020 - 12 bit", 0,
2319 {
"smpte2084",
"SMPTE ST 2084", 0,
2321 {
"smpte428_1",
"SMPTE ST 428-1", 0,
static double val(void *priv, double ch)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> dc
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Libavcodec external API header.
static av_cold int init(AVCodecContext *avctx)
int ff_init_vlc_sparse(VLC *vlc_arg, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
void ff_free_vlc(VLC *vlc)
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
static av_always_inline int bytestream2_tell(GetByteContext *g)
#define bytestream2_get_ne16
#define flags(name, subs,...)
#define u(width, name, range_min, range_max)
avpriv_trc_function avpriv_get_trc_function_from_trc(enum AVColorTransferCharacteristic trc)
Determine the function needed to apply the given AVColorTransferCharacteristic to linear input.
double(* avpriv_trc_function)(double)
common internal and external API header
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
static __device__ float fabsf(float a)
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
channel
Use these values when setting the channel map with ebur128_set_channel().
static void idct_1d(float *blk, int step)
static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *freq)
static int huf_build_dec_table(EXRContext *s, EXRThreadData *td, int im, int iM)
static void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
static const AVOption options[]
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
#define LONG_ZEROCODE_RUN
static float to_linear(float x, float scale)
#define SHORT_ZEROCODE_RUN
static av_cold int decode_init(AVCodecContext *avctx)
static const AVClass exr_class
static int decode_header(EXRContext *s, AVFrame *frame)
static int dwa_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static void unpack_14(const uint8_t b[14], uint16_t s[16])
static av_cold int decode_end(AVCodecContext *avctx)
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static void skip_header_chunk(EXRContext *s)
static void dct_inverse(float *block)
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym, int no, uint16_t *out)
static void convert(float y, float u, float v, float *b, float *g, float *r)
static void unpack_3(const uint8_t b[3], uint16_t s[16])
static void huf_canonical_code_table(uint64_t *freq)
#define SHORTEST_LONG_RUN
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
static int huf_uncompress(EXRContext *s, EXRThreadData *td, GetByteContext *gb, uint16_t *dst, int dst_size)
static int ac_uncompress(EXRContext *s, GetByteContext *gb, float *block)
static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx)
static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static int check_header_variable(EXRContext *s, const char *value_name, const char *value_type, unsigned int minimum_length)
Check if the variable name corresponds to its data type.
static void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
static int pxr24_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static int rle(uint8_t *dst, const uint8_t *src, int compressed_size, int uncompressed_size)
bitstream reader API header.
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
static int get_bits_left(GetBitContext *gb)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int get_bits_count(const GetBitContext *s)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_LOG_WARNING
Something somehow does not look correct.
#define AV_LOG_INFO
Standard information.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
const char * av_default_item_name(void *ptr)
Return the context name.
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
void * av_realloc(void *ptr, size_t size)
Allocate, reallocate, or free a block of memory.
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
@ AV_PICTURE_TYPE_I
Intra.
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
#define LIBAVUTIL_VERSION_INT
static void half2float_table(uint32_t *mantissatable, uint32_t *exponenttable, uint16_t *offsettable)
static uint32_t half2float(uint16_t h, uint32_t *mantissatable, uint32_t *exponenttable, uint16_t *offsettable)
static const int16_t alpha[]
static av_always_inline float av_int2float(uint32_t i)
Reinterpret a 32-bit integer as a float.
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
av_cold void ff_exrdsp_init(ExrDSPContext *c)
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static const struct @322 planes[]
const uint8_t ff_zigzag_direct[64]
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
#define AV_PIX_FMT_GBRPF32
#define AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_GRAYF32
#define AV_PIX_FMT_GRAY16
AVColorTransferCharacteristic
Color Transfer Characteristic.
@ AVCOL_TRC_SMPTE170M
also ITU-R BT601-6 525 or 625 / ITU-R BT1358 525 or 625 / ITU-R BT1700 NTSC
@ AVCOL_TRC_GAMMA22
also ITU-R BT470M / ITU-R BT1700 625 PAL & SECAM
@ AVCOL_TRC_BT1361_ECG
ITU-R BT1361 Extended Colour Gamut.
@ AVCOL_TRC_LOG
"Logarithmic transfer characteristic (100:1 range)"
@ AVCOL_TRC_IEC61966_2_4
IEC 61966-2-4.
@ AVCOL_TRC_LINEAR
"Linear transfer characteristics"
@ AVCOL_TRC_GAMMA28
also ITU-R BT470BG
@ AVCOL_TRC_LOG_SQRT
"Logarithmic transfer characteristic (100 * Sqrt(10) : 1 range)"
@ AVCOL_TRC_BT2020_12
ITU-R BT2020 for 12-bit system.
@ AVCOL_TRC_IEC61966_2_1
IEC 61966-2-1 (sRGB or sYCC)
@ AVCOL_TRC_BT2020_10
ITU-R BT2020 for 10-bit system.
@ AVCOL_TRC_BT709
also ITU-R BT1361
@ AVCOL_TRC_NB
Not part of ABI.
#define AV_PIX_FMT_GBRAPF32
FF_ENABLE_DEPRECATION_WARNINGS int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
static int shift(int a, int b)
Describe the class of an AVClass context structure.
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
main external API structure.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
int width
picture width / height.
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
const char * name
Name of the codec implementation.
This structure describes decoded (raw) audio or video data.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
AVDictionary * metadata
metadata.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
enum AVPictureType pict_type
Picture type of the frame.
This structure stores compressed data.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
enum ExrPixelType pixel_type
enum AVColorTransferCharacteristic apply_trc_type
EXRTileAttribute tile_attr
int current_channel_offset
EXRThreadData * thread_data
uint32_t exponenttable[64]
enum ExrCompr compression
union av_intfloat32 gamma_table[65536]
enum ExrPixelType pixel_type
uint32_t mantissatable[2048]
const AVPixFmtDescriptor * desc
uint8_t * uncompressed_data
enum ExrTileLevelRound level_round
enum ExrTileLevelMode level_mode
VLC_TYPE(* table)[2]
code, bits
#define av_malloc_array(a, b)
#define avpriv_request_sample(...)
static av_always_inline int diff(const uint32_t a, const uint32_t b)