40 #define MAX_BANDS MAX_SPLITS + 1
84 #define OFFSET(x) offsetof(AudioCrossoverContext, x)
85 #define AF AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM
110 char *p, *
arg, *saveptr =
NULL;
130 if (
c[0] ==
'd' &&
c[1] ==
'B')
145 char *p, *
arg, *saveptr =
NULL;
170 if (
i > 0 && freq <= s->splits[
i-1]) {
184 for (
i = 0;
i <=
s->nb_splits;
i++) {
205 double omega = 2. *
M_PI *
fc / sr;
206 double cosine = cos(omega);
207 double alpha = sin(omega) / (2. * q);
209 double b0 = (1. - cosine) / 2.;
210 double b1 = 1. - cosine;
211 double b2 = (1. - cosine) / 2.;
213 double a1 = -2. * cosine;
231 double omega = 2. *
M_PI *
fc / sr;
232 double cosine = cos(omega);
233 double alpha = sin(omega) / (2. * q);
235 double b0 = (1. + cosine) / 2.;
236 double b1 = -1. - cosine;
237 double b2 = (1. + cosine) / 2.;
239 double a1 = -2. * cosine;
257 double omega = 2. *
M_PI *
fc / sr;
258 double cosine = cos(omega);
259 double alpha = sin(omega) / (2. * q);
262 double a1 = -2. * cosine;
283 double omega = 2. *
M_PI *
fc / sr;
300 double n = order / 2.;
302 for (
int i = 0;
i < n / 2;
i++)
303 q[
i] = 1. / (-2. * cos(
M_PI * (2. * (
i + 1) + n - 1.) / (2. * n)));
336 #define BIQUAD_PROCESS(name, type) \
337 static void biquad_process_## name(const type *const c, \
339 type *dst, const type *src, \
342 const type b0 = c[B0]; \
343 const type b1 = c[B1]; \
344 const type b2 = c[B2]; \
345 const type a1 = c[A1]; \
346 const type a2 = c[A2]; \
350 for (int n = 0; n + 1 < nb_samples; n++) { \
354 out = in * b0 + z1; \
355 z1 = b1 * in + z2 + a1 * out; \
356 z2 = b2 * in + a2 * out; \
361 out = in * b0 + z1; \
362 z1 = b1 * in + z2 + a1 * out; \
363 z2 = b2 * in + a2 * out; \
367 if (nb_samples & 1) { \
368 const int n = nb_samples - 1; \
369 const type in = src[n]; \
372 out = in * b0 + z1; \
373 z1 = b1 * in + z2 + a1 * out; \
374 z2 = b2 * in + a2 * out; \
385 #define XOVER_PROCESS(name, type, one, ff) \
386 static int filter_channels_## name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
388 AudioCrossoverContext *s = ctx->priv; \
389 AVFrame *in = s->input_frame; \
390 AVFrame **frames = s->frames; \
391 const int start = (in->channels * jobnr) / nb_jobs; \
392 const int end = (in->channels * (jobnr+1)) / nb_jobs; \
393 const int nb_samples = in->nb_samples; \
394 const int nb_outs = ctx->nb_outputs; \
395 const int first_order = s->first_order; \
397 for (int ch = start; ch < end; ch++) { \
398 const type *src = (const type *)in->extended_data[ch]; \
399 type *xover = (type *)s->xover->extended_data[ch]; \
401 s->fdsp->vector_## ff ##mul_scalar((type *)frames[0]->extended_data[ch], src, \
402 s->level_in, FFALIGN(nb_samples, sizeof(type))); \
404 for (int band = 0; band < nb_outs; band++) { \
405 for (int f = 0; band + 1 < nb_outs && f < s->filter_count; f++) { \
406 const type *prv = (const type *)frames[band]->extended_data[ch]; \
407 type *dst = (type *)frames[band + 1]->extended_data[ch]; \
408 const type *hsrc = f == 0 ? prv : dst; \
409 type *hp = xover + nb_outs * 20 + band * 20 + f * 2; \
410 const type *const hpc = (type *)&s->hp[band][f].c ## ff; \
412 biquad_process_## name(hpc, hp, dst, hsrc, nb_samples); \
415 for (int f = 0; band + 1 < nb_outs && f < s->filter_count; f++) { \
416 type *dst = (type *)frames[band]->extended_data[ch]; \
417 const type *lsrc = dst; \
418 type *lp = xover + band * 20 + f * 2; \
419 const type *const lpc = (type *)&s->lp[band][f].c ## ff; \
421 biquad_process_## name(lpc, lp, dst, lsrc, nb_samples); \
424 for (int aband = band + 1; aband + 1 < nb_outs; aband++) { \
426 const type *asrc = (const type *)frames[band]->extended_data[ch]; \
427 type *dst = (type *)frames[band]->extended_data[ch]; \
428 type *ap = xover + nb_outs * 40 + (aband * nb_outs + band) * 20; \
429 const type *const apc = (type *)&s->ap[aband][0].c ## ff; \
431 biquad_process_## name(apc, ap, dst, asrc, nb_samples); \
434 for (int f = first_order; f < s->ap_filter_count; f++) { \
435 const type *asrc = (const type *)frames[band]->extended_data[ch]; \
436 type *dst = (type *)frames[band]->extended_data[ch]; \
437 type *ap = xover + nb_outs * 40 + (aband * nb_outs + band) * 20 + f * 2;\
438 const type *const apc = (type *)&s->ap[aband][f].c ## ff; \
440 biquad_process_## name(apc, ap, dst, asrc, nb_samples); \
445 for (int band = 0; band < nb_outs; band++) { \
446 const type gain = s->gains[band] * ((band & 1 && first_order) ? -one : one); \
447 type *dst = (type *)frames[band]->extended_data[ch]; \
449 s->fdsp->vector_## ff ##mul_scalar(dst, dst, gain, \
450 FFALIGN(nb_samples, sizeof(type))); \
467 s->order = (
s->order_opt + 1) * 2;
468 s->filter_count =
s->order / 2;
469 s->first_order =
s->filter_count & 1;
470 s->ap_filter_count =
s->filter_count / 2 +
s->first_order;
473 for (
int band = 0; band <=
s->nb_splits; band++) {
474 if (
s->first_order) {
479 for (
int n =
s->first_order; n < s->filter_count; n++) {
480 const int idx =
s->filter_count / 2 - ((n +
s->first_order) / 2 -
s->first_order) - 1;
489 for (
int n =
s->first_order; n < s->ap_filter_count; n++) {
490 const int idx = (
s->filter_count / 2 - ((n * 2 +
s->first_order) / 2 -
s->first_order) - 1);
496 switch (inlink->format) {
502 ctx->nb_outputs *
ctx->nb_outputs * 10));
516 for (
i = 0;
i <
ctx->nb_outputs;
i++) {
534 for (
i = 0;
i <
ctx->nb_outputs;
i++) {
542 for (
i = 0;
i <
ctx->nb_outputs;
i++)
545 s->input_frame =
NULL;
558 for (
i = 0;
i <
ctx->nb_outputs;
i++)
573 .
name =
"acrossover",
576 .priv_class = &acrossover_class,
static enum AVSampleFormat sample_fmts[]
static const AVFilterPad outputs[]
static void set_hp(BiquadCoeffs *b, double fc, double q, double sr)
static void set_lp(BiquadCoeffs *b, double fc, double q, double sr)
static int query_formats(AVFilterContext *ctx)
AVFilter ff_af_acrossover
static int config_input(AVFilterLink *inlink)
static void set_ap(BiquadCoeffs *b, double fc, double q, double sr)
static const AVFilterPad inputs[]
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
static const AVOption acrossover_options[]
AVFILTER_DEFINE_CLASS(acrossover)
static void set_ap1(BiquadCoeffs *b, double fc, double sr)
static av_cold int init(AVFilterContext *ctx)
static av_cold void uninit(AVFilterContext *ctx)
#define XOVER_PROCESS(name, type, one, ff)
#define BIQUAD_PROCESS(name, type)
static void calc_q_factors(int order, double *q)
static int parse_gains(AVFilterContext *ctx)
Macro definitions for various function/variable attributes.
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Main libavfilter public API header.
char * av_asprintf(const char *fmt,...)
#define flags(name, subs,...)
#define fc(width, name, range_min, range_max)
audio channel layout utility functions
simple arithmetic expression evaluator
#define AVFILTER_FLAG_DYNAMIC_OUTPUTS
The number of the filter outputs is not determined just by AVFilter.outputs.
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
AVSampleFormat
Audio sample formats.
@ AV_SAMPLE_FMT_FLTP
float, planar
@ AV_SAMPLE_FMT_DBLP
double, planar
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok().
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
static const int16_t alpha[]
static int ff_insert_outpad(AVFilterContext *f, unsigned index, AVFilterPad *p)
Insert a new output pad for the filter.
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
enum MovChannelLayoutTag * layouts
Describe the class of an AVClass context structure.
A list of supported channel layouts.
A link between two filters.
int channels
Number of channels.
AVFilterContext * dst
dest filter
A filter pad used for either input or output.
enum AVMediaType type
AVFilterPad type.
const char * name
Pad name.
const char * name
Filter name.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
This structure describes decoded (raw) audio or video data.
BiquadCoeffs lp[MAX_BANDS][20]
BiquadCoeffs hp[MAX_BANDS][20]
int(* filter_channels)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
BiquadCoeffs ap[MAX_BANDS][20]
AVFrame * frames[MAX_BANDS]
static double b1(void *priv, double x, double y)
static double b2(void *priv, double x, double y)
static double b0(void *priv, double x, double y)