FFmpeg  4.4
swscale.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include <inttypes.h>
22 #include <math.h>
23 #include <stdio.h>
24 #include <string.h>
25 
26 #include "libavutil/avassert.h"
27 #include "libavutil/avutil.h"
28 #include "libavutil/bswap.h"
29 #include "libavutil/cpu.h"
30 #include "libavutil/imgutils.h"
31 #include "libavutil/intreadwrite.h"
32 #include "libavutil/mathematics.h"
33 #include "libavutil/mem_internal.h"
34 #include "libavutil/pixdesc.h"
35 #include "config.h"
36 #include "rgb2rgb.h"
37 #include "swscale_internal.h"
38 #include "swscale.h"
39 
41  { 36, 68, 60, 92, 34, 66, 58, 90, },
42  { 100, 4, 124, 28, 98, 2, 122, 26, },
43  { 52, 84, 44, 76, 50, 82, 42, 74, },
44  { 116, 20, 108, 12, 114, 18, 106, 10, },
45  { 32, 64, 56, 88, 38, 70, 62, 94, },
46  { 96, 0, 120, 24, 102, 6, 126, 30, },
47  { 48, 80, 40, 72, 54, 86, 46, 78, },
48  { 112, 16, 104, 8, 118, 22, 110, 14, },
49  { 36, 68, 60, 92, 34, 66, 58, 90, },
50 };
51 
52 DECLARE_ALIGNED(8, static const uint8_t, sws_pb_64)[8] = {
53  64, 64, 64, 64, 64, 64, 64, 64
54 };
55 
56 static av_always_inline void fillPlane(uint8_t *plane, int stride, int width,
57  int height, int y, uint8_t val)
58 {
59  int i;
60  uint8_t *ptr = plane + stride * y;
61  for (i = 0; i < height; i++) {
62  memset(ptr, val, width);
63  ptr += stride;
64  }
65 }
66 
67 static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW,
68  const uint8_t *_src, const int16_t *filter,
69  const int32_t *filterPos, int filterSize)
70 {
71  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
72  int i;
73  int32_t *dst = (int32_t *) _dst;
74  const uint16_t *src = (const uint16_t *) _src;
75  int bits = desc->comp[0].depth - 1;
76  int sh = bits - 4;
77 
78  if ((isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8) && desc->comp[0].depth<16) {
79  sh = 9;
80  } else if (desc->flags & AV_PIX_FMT_FLAG_FLOAT) { /* float input are process like uint 16bpc */
81  sh = 16 - 1 - 4;
82  }
83 
84  for (i = 0; i < dstW; i++) {
85  int j;
86  int srcPos = filterPos[i];
87  int val = 0;
88 
89  for (j = 0; j < filterSize; j++) {
90  val += src[srcPos + j] * filter[filterSize * i + j];
91  }
92  // filter=14 bit, input=16 bit, output=30 bit, >> 11 makes 19 bit
93  dst[i] = FFMIN(val >> sh, (1 << 19) - 1);
94  }
95 }
96 
97 static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW,
98  const uint8_t *_src, const int16_t *filter,
99  const int32_t *filterPos, int filterSize)
100 {
101  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
102  int i;
103  const uint16_t *src = (const uint16_t *) _src;
104  int sh = desc->comp[0].depth - 1;
105 
106  if (sh<15) {
107  sh = isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8 ? 13 : (desc->comp[0].depth - 1);
108  } else if (desc->flags & AV_PIX_FMT_FLAG_FLOAT) { /* float input are process like uint 16bpc */
109  sh = 16 - 1;
110  }
111 
112  for (i = 0; i < dstW; i++) {
113  int j;
114  int srcPos = filterPos[i];
115  int val = 0;
116 
117  for (j = 0; j < filterSize; j++) {
118  val += src[srcPos + j] * filter[filterSize * i + j];
119  }
120  // filter=14 bit, input=16 bit, output=30 bit, >> 15 makes 15 bit
121  dst[i] = FFMIN(val >> sh, (1 << 15) - 1);
122  }
123 }
124 
125 // bilinear / bicubic scaling
126 static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW,
127  const uint8_t *src, const int16_t *filter,
128  const int32_t *filterPos, int filterSize)
129 {
130  int i;
131  for (i = 0; i < dstW; i++) {
132  int j;
133  int srcPos = filterPos[i];
134  int val = 0;
135  for (j = 0; j < filterSize; j++) {
136  val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
137  }
138  dst[i] = FFMIN(val >> 7, (1 << 15) - 1); // the cubic equation does overflow ...
139  }
140 }
141 
142 static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW,
143  const uint8_t *src, const int16_t *filter,
144  const int32_t *filterPos, int filterSize)
145 {
146  int i;
147  int32_t *dst = (int32_t *) _dst;
148  for (i = 0; i < dstW; i++) {
149  int j;
150  int srcPos = filterPos[i];
151  int val = 0;
152  for (j = 0; j < filterSize; j++) {
153  val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
154  }
155  dst[i] = FFMIN(val >> 3, (1 << 19) - 1); // the cubic equation does overflow ...
156  }
157 }
158 
159 // FIXME all pal and rgb srcFormats could do this conversion as well
160 // FIXME all scalers more complex than bilinear could do half of this transform
161 static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
162 {
163  int i;
164  for (i = 0; i < width; i++) {
165  dstU[i] = (FFMIN(dstU[i], 30775) * 4663 - 9289992) >> 12; // -264
166  dstV[i] = (FFMIN(dstV[i], 30775) * 4663 - 9289992) >> 12; // -264
167  }
168 }
169 
170 static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
171 {
172  int i;
173  for (i = 0; i < width; i++) {
174  dstU[i] = (dstU[i] * 1799 + 4081085) >> 11; // 1469
175  dstV[i] = (dstV[i] * 1799 + 4081085) >> 11; // 1469
176  }
177 }
178 
179 static void lumRangeToJpeg_c(int16_t *dst, int width)
180 {
181  int i;
182  for (i = 0; i < width; i++)
183  dst[i] = (FFMIN(dst[i], 30189) * 19077 - 39057361) >> 14;
184 }
185 
186 static void lumRangeFromJpeg_c(int16_t *dst, int width)
187 {
188  int i;
189  for (i = 0; i < width; i++)
190  dst[i] = (dst[i] * 14071 + 33561947) >> 14;
191 }
192 
193 static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
194 {
195  int i;
196  int32_t *dstU = (int32_t *) _dstU;
197  int32_t *dstV = (int32_t *) _dstV;
198  for (i = 0; i < width; i++) {
199  dstU[i] = (FFMIN(dstU[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
200  dstV[i] = (FFMIN(dstV[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
201  }
202 }
203 
204 static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
205 {
206  int i;
207  int32_t *dstU = (int32_t *) _dstU;
208  int32_t *dstV = (int32_t *) _dstV;
209  for (i = 0; i < width; i++) {
210  dstU[i] = (dstU[i] * 1799 + (4081085 << 4)) >> 11; // 1469
211  dstV[i] = (dstV[i] * 1799 + (4081085 << 4)) >> 11; // 1469
212  }
213 }
214 
215 static void lumRangeToJpeg16_c(int16_t *_dst, int width)
216 {
217  int i;
218  int32_t *dst = (int32_t *) _dst;
219  for (i = 0; i < width; i++) {
220  dst[i] = ((int)(FFMIN(dst[i], 30189 << 4) * 4769U - (39057361 << 2))) >> 12;
221  }
222 }
223 
224 static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
225 {
226  int i;
227  int32_t *dst = (int32_t *) _dst;
228  for (i = 0; i < width; i++)
229  dst[i] = (dst[i]*(14071/4) + (33561947<<4)/4)>>12;
230 }
231 
232 
233 #define DEBUG_SWSCALE_BUFFERS 0
234 #define DEBUG_BUFFERS(...) \
235  if (DEBUG_SWSCALE_BUFFERS) \
236  av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
237 
238 static int swscale(SwsContext *c, const uint8_t *src[],
239  int srcStride[], int srcSliceY,
240  int srcSliceH, uint8_t *dst[], int dstStride[])
241 {
242  /* load a few things into local vars to make the code more readable?
243  * and faster */
244  const int dstW = c->dstW;
245  const int dstH = c->dstH;
246 
247  const enum AVPixelFormat dstFormat = c->dstFormat;
248  const int flags = c->flags;
249  int32_t *vLumFilterPos = c->vLumFilterPos;
250  int32_t *vChrFilterPos = c->vChrFilterPos;
251 
252  const int vLumFilterSize = c->vLumFilterSize;
253  const int vChrFilterSize = c->vChrFilterSize;
254 
255  yuv2planar1_fn yuv2plane1 = c->yuv2plane1;
256  yuv2planarX_fn yuv2planeX = c->yuv2planeX;
257  yuv2interleavedX_fn yuv2nv12cX = c->yuv2nv12cX;
258  yuv2packed1_fn yuv2packed1 = c->yuv2packed1;
259  yuv2packed2_fn yuv2packed2 = c->yuv2packed2;
260  yuv2packedX_fn yuv2packedX = c->yuv2packedX;
261  yuv2anyX_fn yuv2anyX = c->yuv2anyX;
262  const int chrSrcSliceY = srcSliceY >> c->chrSrcVSubSample;
263  const int chrSrcSliceH = AV_CEIL_RSHIFT(srcSliceH, c->chrSrcVSubSample);
264  int should_dither = isNBPS(c->srcFormat) ||
265  is16BPS(c->srcFormat);
266  int lastDstY;
267 
268  /* vars which will change and which we need to store back in the context */
269  int dstY = c->dstY;
270  int lastInLumBuf = c->lastInLumBuf;
271  int lastInChrBuf = c->lastInChrBuf;
272 
273  int lumStart = 0;
274  int lumEnd = c->descIndex[0];
275  int chrStart = lumEnd;
276  int chrEnd = c->descIndex[1];
277  int vStart = chrEnd;
278  int vEnd = c->numDesc;
279  SwsSlice *src_slice = &c->slice[lumStart];
280  SwsSlice *hout_slice = &c->slice[c->numSlice-2];
281  SwsSlice *vout_slice = &c->slice[c->numSlice-1];
282  SwsFilterDescriptor *desc = c->desc;
283 
284  int needAlpha = c->needAlpha;
285 
286  int hasLumHoles = 1;
287  int hasChrHoles = 1;
288 
289  if (isPacked(c->srcFormat)) {
290  src[1] =
291  src[2] =
292  src[3] = src[0];
293  srcStride[1] =
294  srcStride[2] =
295  srcStride[3] = srcStride[0];
296  }
297  srcStride[1] *= 1 << c->vChrDrop;
298  srcStride[2] *= 1 << c->vChrDrop;
299 
300  DEBUG_BUFFERS("swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
301  src[0], srcStride[0], src[1], srcStride[1],
302  src[2], srcStride[2], src[3], srcStride[3],
303  dst[0], dstStride[0], dst[1], dstStride[1],
304  dst[2], dstStride[2], dst[3], dstStride[3]);
305  DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
306  srcSliceY, srcSliceH, dstY, dstH);
307  DEBUG_BUFFERS("vLumFilterSize: %d vChrFilterSize: %d\n",
308  vLumFilterSize, vChrFilterSize);
309 
310  if (dstStride[0]&15 || dstStride[1]&15 ||
311  dstStride[2]&15 || dstStride[3]&15) {
312  static int warnedAlready = 0; // FIXME maybe move this into the context
313  if (flags & SWS_PRINT_INFO && !warnedAlready) {
315  "Warning: dstStride is not aligned!\n"
316  " ->cannot do aligned memory accesses anymore\n");
317  warnedAlready = 1;
318  }
319  }
320 
321  if ( (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15
322  || (uintptr_t)src[0]&15 || (uintptr_t)src[1]&15 || (uintptr_t)src[2]&15
323  || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
324  || srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15
325  ) {
326  static int warnedAlready=0;
327  int cpu_flags = av_get_cpu_flags();
328  if (HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) && !warnedAlready){
329  av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speed loss\n");
330  warnedAlready=1;
331  }
332  }
333 
334  /* Note the user might start scaling the picture in the middle so this
335  * will not get executed. This is not really intended but works
336  * currently, so people might do it. */
337  if (srcSliceY == 0) {
338  dstY = 0;
339  lastInLumBuf = -1;
340  lastInChrBuf = -1;
341  }
342 
343  if (!should_dither) {
344  c->chrDither8 = c->lumDither8 = sws_pb_64;
345  }
346  lastDstY = dstY;
347 
348  ff_init_vscale_pfn(c, yuv2plane1, yuv2planeX, yuv2nv12cX,
349  yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, c->use_mmx_vfilter);
350 
351  ff_init_slice_from_src(src_slice, (uint8_t**)src, srcStride, c->srcW,
352  srcSliceY, srcSliceH, chrSrcSliceY, chrSrcSliceH, 1);
353 
354  ff_init_slice_from_src(vout_slice, (uint8_t**)dst, dstStride, c->dstW,
355  dstY, dstH, dstY >> c->chrDstVSubSample,
356  AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample), 0);
357  if (srcSliceY == 0) {
358  hout_slice->plane[0].sliceY = lastInLumBuf + 1;
359  hout_slice->plane[1].sliceY = lastInChrBuf + 1;
360  hout_slice->plane[2].sliceY = lastInChrBuf + 1;
361  hout_slice->plane[3].sliceY = lastInLumBuf + 1;
362 
363  hout_slice->plane[0].sliceH =
364  hout_slice->plane[1].sliceH =
365  hout_slice->plane[2].sliceH =
366  hout_slice->plane[3].sliceH = 0;
367  hout_slice->width = dstW;
368  }
369 
370  for (; dstY < dstH; dstY++) {
371  const int chrDstY = dstY >> c->chrDstVSubSample;
372  int use_mmx_vfilter= c->use_mmx_vfilter;
373 
374  // First line needed as input
375  const int firstLumSrcY = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
376  const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), dstH - 1)]);
377  // First line needed as input
378  const int firstChrSrcY = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
379 
380  // Last line needed as input
381  int lastLumSrcY = FFMIN(c->srcH, firstLumSrcY + vLumFilterSize) - 1;
382  int lastLumSrcY2 = FFMIN(c->srcH, firstLumSrcY2 + vLumFilterSize) - 1;
383  int lastChrSrcY = FFMIN(c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
384  int enough_lines;
385 
386  int i;
387  int posY, cPosY, firstPosY, lastPosY, firstCPosY, lastCPosY;
388 
389  // handle holes (FAST_BILINEAR & weird filters)
390  if (firstLumSrcY > lastInLumBuf) {
391 
392  hasLumHoles = lastInLumBuf != firstLumSrcY - 1;
393  if (hasLumHoles) {
394  hout_slice->plane[0].sliceY = firstLumSrcY;
395  hout_slice->plane[3].sliceY = firstLumSrcY;
396  hout_slice->plane[0].sliceH =
397  hout_slice->plane[3].sliceH = 0;
398  }
399 
400  lastInLumBuf = firstLumSrcY - 1;
401  }
402  if (firstChrSrcY > lastInChrBuf) {
403 
404  hasChrHoles = lastInChrBuf != firstChrSrcY - 1;
405  if (hasChrHoles) {
406  hout_slice->plane[1].sliceY = firstChrSrcY;
407  hout_slice->plane[2].sliceY = firstChrSrcY;
408  hout_slice->plane[1].sliceH =
409  hout_slice->plane[2].sliceH = 0;
410  }
411 
412  lastInChrBuf = firstChrSrcY - 1;
413  }
414 
415  DEBUG_BUFFERS("dstY: %d\n", dstY);
416  DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
417  firstLumSrcY, lastLumSrcY, lastInLumBuf);
418  DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
419  firstChrSrcY, lastChrSrcY, lastInChrBuf);
420 
421  // Do we have enough lines in this slice to output the dstY line
422  enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&
423  lastChrSrcY < AV_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample);
424 
425  if (!enough_lines) {
426  lastLumSrcY = srcSliceY + srcSliceH - 1;
427  lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
428  DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
429  lastLumSrcY, lastChrSrcY);
430  }
431 
432  av_assert0((lastLumSrcY - firstLumSrcY + 1) <= hout_slice->plane[0].available_lines);
433  av_assert0((lastChrSrcY - firstChrSrcY + 1) <= hout_slice->plane[1].available_lines);
434 
435 
436  posY = hout_slice->plane[0].sliceY + hout_slice->plane[0].sliceH;
437  if (posY <= lastLumSrcY && !hasLumHoles) {
438  firstPosY = FFMAX(firstLumSrcY, posY);
439  lastPosY = FFMIN(firstLumSrcY + hout_slice->plane[0].available_lines - 1, srcSliceY + srcSliceH - 1);
440  } else {
441  firstPosY = posY;
442  lastPosY = lastLumSrcY;
443  }
444 
445  cPosY = hout_slice->plane[1].sliceY + hout_slice->plane[1].sliceH;
446  if (cPosY <= lastChrSrcY && !hasChrHoles) {
447  firstCPosY = FFMAX(firstChrSrcY, cPosY);
448  lastCPosY = FFMIN(firstChrSrcY + hout_slice->plane[1].available_lines - 1, AV_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample) - 1);
449  } else {
450  firstCPosY = cPosY;
451  lastCPosY = lastChrSrcY;
452  }
453 
454  ff_rotate_slice(hout_slice, lastPosY, lastCPosY);
455 
456  if (posY < lastLumSrcY + 1) {
457  for (i = lumStart; i < lumEnd; ++i)
458  desc[i].process(c, &desc[i], firstPosY, lastPosY - firstPosY + 1);
459  }
460 
461  lastInLumBuf = lastLumSrcY;
462 
463  if (cPosY < lastChrSrcY + 1) {
464  for (i = chrStart; i < chrEnd; ++i)
465  desc[i].process(c, &desc[i], firstCPosY, lastCPosY - firstCPosY + 1);
466  }
467 
468  lastInChrBuf = lastChrSrcY;
469 
470  if (!enough_lines)
471  break; // we can't output a dstY line so let's try with the next slice
472 
473 #if HAVE_MMX_INLINE
475 #endif
476  if (should_dither) {
477  c->chrDither8 = ff_dither_8x8_128[chrDstY & 7];
478  c->lumDither8 = ff_dither_8x8_128[dstY & 7];
479  }
480  if (dstY >= dstH - 2) {
481  /* hmm looks like we can't use MMX here without overwriting
482  * this array's tail */
483  ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX,
484  &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
485  use_mmx_vfilter= 0;
486  ff_init_vscale_pfn(c, yuv2plane1, yuv2planeX, yuv2nv12cX,
487  yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, use_mmx_vfilter);
488  }
489 
490  {
491  for (i = vStart; i < vEnd; ++i)
492  desc[i].process(c, &desc[i], dstY, 1);
493  }
494  }
495  if (isPlanar(dstFormat) && isALPHA(dstFormat) && !needAlpha) {
496  int length = dstW;
497  int height = dstY - lastDstY;
498 
499  if (is16BPS(dstFormat) || isNBPS(dstFormat)) {
500  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat);
501  fillPlane16(dst[3], dstStride[3], length, height, lastDstY,
502  1, desc->comp[3].depth,
503  isBE(dstFormat));
504  } else if (is32BPS(dstFormat)) {
505  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat);
506  fillPlane32(dst[3], dstStride[3], length, height, lastDstY,
507  1, desc->comp[3].depth,
508  isBE(dstFormat), desc->flags & AV_PIX_FMT_FLAG_FLOAT);
509  } else
510  fillPlane(dst[3], dstStride[3], length, height, lastDstY, 255);
511  }
512 
513 #if HAVE_MMXEXT_INLINE
515  __asm__ volatile ("sfence" ::: "memory");
516 #endif
517  emms_c();
518 
519  /* store changed local vars back in the context */
520  c->dstY = dstY;
521  c->lastInLumBuf = lastInLumBuf;
522  c->lastInChrBuf = lastInChrBuf;
523 
524  return dstY - lastDstY;
525 }
526 
528 {
529  c->lumConvertRange = NULL;
530  c->chrConvertRange = NULL;
531  if (c->srcRange != c->dstRange && !isAnyRGB(c->dstFormat)) {
532  if (c->dstBpc <= 14) {
533  if (c->srcRange) {
534  c->lumConvertRange = lumRangeFromJpeg_c;
535  c->chrConvertRange = chrRangeFromJpeg_c;
536  } else {
537  c->lumConvertRange = lumRangeToJpeg_c;
538  c->chrConvertRange = chrRangeToJpeg_c;
539  }
540  } else {
541  if (c->srcRange) {
542  c->lumConvertRange = lumRangeFromJpeg16_c;
543  c->chrConvertRange = chrRangeFromJpeg16_c;
544  } else {
545  c->lumConvertRange = lumRangeToJpeg16_c;
546  c->chrConvertRange = chrRangeToJpeg16_c;
547  }
548  }
549  }
550 }
551 
553 {
554  enum AVPixelFormat srcFormat = c->srcFormat;
555 
556  ff_sws_init_output_funcs(c, &c->yuv2plane1, &c->yuv2planeX,
557  &c->yuv2nv12cX, &c->yuv2packed1,
558  &c->yuv2packed2, &c->yuv2packedX, &c->yuv2anyX);
559 
561 
562  if (c->srcBpc == 8) {
563  if (c->dstBpc <= 14) {
564  c->hyScale = c->hcScale = hScale8To15_c;
565  if (c->flags & SWS_FAST_BILINEAR) {
566  c->hyscale_fast = ff_hyscale_fast_c;
567  c->hcscale_fast = ff_hcscale_fast_c;
568  }
569  } else {
570  c->hyScale = c->hcScale = hScale8To19_c;
571  }
572  } else {
573  c->hyScale = c->hcScale = c->dstBpc > 14 ? hScale16To19_c
574  : hScale16To15_c;
575  }
576 
578 
579  if (!(isGray(srcFormat) || isGray(c->dstFormat) ||
580  srcFormat == AV_PIX_FMT_MONOBLACK || srcFormat == AV_PIX_FMT_MONOWHITE))
581  c->needs_hcscale = 1;
582 }
583 
585 {
587 
588  if (ARCH_PPC)
590  if (ARCH_X86)
592  if (ARCH_AARCH64)
594  if (ARCH_ARM)
596 
597  return swscale;
598 }
599 
600 static void reset_ptr(const uint8_t *src[], enum AVPixelFormat format)
601 {
602  if (!isALPHA(format))
603  src[3] = NULL;
604  if (!isPlanar(format)) {
605  src[3] = src[2] = NULL;
606 
607  if (!usePal(format))
608  src[1] = NULL;
609  }
610 }
611 
612 static int check_image_pointers(const uint8_t * const data[4], enum AVPixelFormat pix_fmt,
613  const int linesizes[4])
614 {
616  int i;
617 
618  av_assert2(desc);
619 
620  for (i = 0; i < 4; i++) {
621  int plane = desc->comp[i].plane;
622  if (!data[plane] || !linesizes[plane])
623  return 0;
624  }
625 
626  return 1;
627 }
628 
629 static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst,
630  const uint16_t *src, int stride, int h)
631 {
632  int xp,yp;
633  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
634 
635  for (yp=0; yp<h; yp++) {
636  for (xp=0; xp+2<stride; xp+=3) {
637  int x, y, z, r, g, b;
638 
639  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
640  x = AV_RB16(src + xp + 0);
641  y = AV_RB16(src + xp + 1);
642  z = AV_RB16(src + xp + 2);
643  } else {
644  x = AV_RL16(src + xp + 0);
645  y = AV_RL16(src + xp + 1);
646  z = AV_RL16(src + xp + 2);
647  }
648 
649  x = c->xyzgamma[x>>4];
650  y = c->xyzgamma[y>>4];
651  z = c->xyzgamma[z>>4];
652 
653  // convert from XYZlinear to sRGBlinear
654  r = c->xyz2rgb_matrix[0][0] * x +
655  c->xyz2rgb_matrix[0][1] * y +
656  c->xyz2rgb_matrix[0][2] * z >> 12;
657  g = c->xyz2rgb_matrix[1][0] * x +
658  c->xyz2rgb_matrix[1][1] * y +
659  c->xyz2rgb_matrix[1][2] * z >> 12;
660  b = c->xyz2rgb_matrix[2][0] * x +
661  c->xyz2rgb_matrix[2][1] * y +
662  c->xyz2rgb_matrix[2][2] * z >> 12;
663 
664  // limit values to 12-bit depth
665  r = av_clip_uintp2(r, 12);
666  g = av_clip_uintp2(g, 12);
667  b = av_clip_uintp2(b, 12);
668 
669  // convert from sRGBlinear to RGB and scale from 12bit to 16bit
670  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
671  AV_WB16(dst + xp + 0, c->rgbgamma[r] << 4);
672  AV_WB16(dst + xp + 1, c->rgbgamma[g] << 4);
673  AV_WB16(dst + xp + 2, c->rgbgamma[b] << 4);
674  } else {
675  AV_WL16(dst + xp + 0, c->rgbgamma[r] << 4);
676  AV_WL16(dst + xp + 1, c->rgbgamma[g] << 4);
677  AV_WL16(dst + xp + 2, c->rgbgamma[b] << 4);
678  }
679  }
680  src += stride;
681  dst += stride;
682  }
683 }
684 
685 static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst,
686  const uint16_t *src, int stride, int h)
687 {
688  int xp,yp;
689  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->dstFormat);
690 
691  for (yp=0; yp<h; yp++) {
692  for (xp=0; xp+2<stride; xp+=3) {
693  int x, y, z, r, g, b;
694 
695  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
696  r = AV_RB16(src + xp + 0);
697  g = AV_RB16(src + xp + 1);
698  b = AV_RB16(src + xp + 2);
699  } else {
700  r = AV_RL16(src + xp + 0);
701  g = AV_RL16(src + xp + 1);
702  b = AV_RL16(src + xp + 2);
703  }
704 
705  r = c->rgbgammainv[r>>4];
706  g = c->rgbgammainv[g>>4];
707  b = c->rgbgammainv[b>>4];
708 
709  // convert from sRGBlinear to XYZlinear
710  x = c->rgb2xyz_matrix[0][0] * r +
711  c->rgb2xyz_matrix[0][1] * g +
712  c->rgb2xyz_matrix[0][2] * b >> 12;
713  y = c->rgb2xyz_matrix[1][0] * r +
714  c->rgb2xyz_matrix[1][1] * g +
715  c->rgb2xyz_matrix[1][2] * b >> 12;
716  z = c->rgb2xyz_matrix[2][0] * r +
717  c->rgb2xyz_matrix[2][1] * g +
718  c->rgb2xyz_matrix[2][2] * b >> 12;
719 
720  // limit values to 12-bit depth
721  x = av_clip_uintp2(x, 12);
722  y = av_clip_uintp2(y, 12);
723  z = av_clip_uintp2(z, 12);
724 
725  // convert from XYZlinear to X'Y'Z' and scale from 12bit to 16bit
726  if (desc->flags & AV_PIX_FMT_FLAG_BE) {
727  AV_WB16(dst + xp + 0, c->xyzgammainv[x] << 4);
728  AV_WB16(dst + xp + 1, c->xyzgammainv[y] << 4);
729  AV_WB16(dst + xp + 2, c->xyzgammainv[z] << 4);
730  } else {
731  AV_WL16(dst + xp + 0, c->xyzgammainv[x] << 4);
732  AV_WL16(dst + xp + 1, c->xyzgammainv[y] << 4);
733  AV_WL16(dst + xp + 2, c->xyzgammainv[z] << 4);
734  }
735  }
736  src += stride;
737  dst += stride;
738  }
739 }
740 
741 /**
742  * swscale wrapper, so we don't need to export the SwsContext.
743  * Assumes planar YUV to be in YUV order instead of YVU.
744  */
746  const uint8_t * const srcSlice[],
747  const int srcStride[], int srcSliceY,
748  int srcSliceH, uint8_t *const dst[],
749  const int dstStride[])
750 {
751  int i, ret;
752  const uint8_t *src2[4];
753  uint8_t *dst2[4];
754  uint8_t *rgb0_tmp = NULL;
755  int macro_height = isBayer(c->srcFormat) ? 2 : (1 << c->chrSrcVSubSample);
756  // copy strides, so they can safely be modified
757  int srcStride2[4];
758  int dstStride2[4];
759  int srcSliceY_internal = srcSliceY;
760 
761  if (!srcStride || !dstStride || !dst || !srcSlice) {
762  av_log(c, AV_LOG_ERROR, "One of the input parameters to sws_scale() is NULL, please check the calling code\n");
763  return 0;
764  }
765 
766  for (i=0; i<4; i++) {
767  srcStride2[i] = srcStride[i];
768  dstStride2[i] = dstStride[i];
769  }
770 
771  if ((srcSliceY & (macro_height-1)) ||
772  ((srcSliceH& (macro_height-1)) && srcSliceY + srcSliceH != c->srcH) ||
773  srcSliceY + srcSliceH > c->srcH) {
774  av_log(c, AV_LOG_ERROR, "Slice parameters %d, %d are invalid\n", srcSliceY, srcSliceH);
775  return AVERROR(EINVAL);
776  }
777 
778  if (c->gamma_flag && c->cascaded_context[0]) {
779  ret = sws_scale(c->cascaded_context[0],
780  srcSlice, srcStride, srcSliceY, srcSliceH,
781  c->cascaded_tmp, c->cascaded_tmpStride);
782 
783  if (ret < 0)
784  return ret;
785 
786  if (c->cascaded_context[2])
787  ret = sws_scale(c->cascaded_context[1], (const uint8_t * const *)c->cascaded_tmp, c->cascaded_tmpStride, srcSliceY, srcSliceH, c->cascaded1_tmp, c->cascaded1_tmpStride);
788  else
789  ret = sws_scale(c->cascaded_context[1], (const uint8_t * const *)c->cascaded_tmp, c->cascaded_tmpStride, srcSliceY, srcSliceH, dst, dstStride);
790 
791  if (ret < 0)
792  return ret;
793 
794  if (c->cascaded_context[2]) {
795  ret = sws_scale(c->cascaded_context[2],
796  (const uint8_t * const *)c->cascaded1_tmp, c->cascaded1_tmpStride, c->cascaded_context[1]->dstY - ret, c->cascaded_context[1]->dstY,
797  dst, dstStride);
798  }
799  return ret;
800  }
801 
802  if (c->cascaded_context[0] && srcSliceY == 0 && srcSliceH == c->cascaded_context[0]->srcH) {
803  ret = sws_scale(c->cascaded_context[0],
804  srcSlice, srcStride, srcSliceY, srcSliceH,
805  c->cascaded_tmp, c->cascaded_tmpStride);
806  if (ret < 0)
807  return ret;
808  ret = sws_scale(c->cascaded_context[1],
809  (const uint8_t * const * )c->cascaded_tmp, c->cascaded_tmpStride, 0, c->cascaded_context[0]->dstH,
810  dst, dstStride);
811  return ret;
812  }
813 
814  memcpy(src2, srcSlice, sizeof(src2));
815  memcpy(dst2, dst, sizeof(dst2));
816 
817  // do not mess up sliceDir if we have a "trailing" 0-size slice
818  if (srcSliceH == 0)
819  return 0;
820 
821  if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {
822  av_log(c, AV_LOG_ERROR, "bad src image pointers\n");
823  return 0;
824  }
825  if (!check_image_pointers((const uint8_t* const*)dst, c->dstFormat, dstStride)) {
826  av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");
827  return 0;
828  }
829 
830  if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
831  av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
832  return 0;
833  }
834  if (c->sliceDir == 0) {
835  if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
836  }
837 
838  if (usePal(c->srcFormat)) {
839  for (i = 0; i < 256; i++) {
840  int r, g, b, y, u, v, a = 0xff;
841  if (c->srcFormat == AV_PIX_FMT_PAL8) {
842  uint32_t p = ((const uint32_t *)(srcSlice[1]))[i];
843  a = (p >> 24) & 0xFF;
844  r = (p >> 16) & 0xFF;
845  g = (p >> 8) & 0xFF;
846  b = p & 0xFF;
847  } else if (c->srcFormat == AV_PIX_FMT_RGB8) {
848  r = ( i >> 5 ) * 36;
849  g = ((i >> 2) & 7) * 36;
850  b = ( i & 3) * 85;
851  } else if (c->srcFormat == AV_PIX_FMT_BGR8) {
852  b = ( i >> 6 ) * 85;
853  g = ((i >> 3) & 7) * 36;
854  r = ( i & 7) * 36;
855  } else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) {
856  r = ( i >> 3 ) * 255;
857  g = ((i >> 1) & 3) * 85;
858  b = ( i & 1) * 255;
859  } else if (c->srcFormat == AV_PIX_FMT_GRAY8 || c->srcFormat == AV_PIX_FMT_GRAY8A) {
860  r = g = b = i;
861  } else {
862  av_assert1(c->srcFormat == AV_PIX_FMT_BGR4_BYTE);
863  b = ( i >> 3 ) * 255;
864  g = ((i >> 1) & 3) * 85;
865  r = ( i & 1) * 255;
866  }
867 #define RGB2YUV_SHIFT 15
868 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
869 #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
870 #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
871 #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
872 #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
873 #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
874 #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
875 #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
876 #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
877 
878  y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
879  u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
880  v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
881  c->pal_yuv[i]= y + (u<<8) + (v<<16) + ((unsigned)a<<24);
882 
883  switch (c->dstFormat) {
884  case AV_PIX_FMT_BGR32:
885 #if !HAVE_BIGENDIAN
886  case AV_PIX_FMT_RGB24:
887 #endif
888  c->pal_rgb[i]= r + (g<<8) + (b<<16) + ((unsigned)a<<24);
889  break;
890  case AV_PIX_FMT_BGR32_1:
891 #if HAVE_BIGENDIAN
892  case AV_PIX_FMT_BGR24:
893 #endif
894  c->pal_rgb[i]= a + (r<<8) + (g<<16) + ((unsigned)b<<24);
895  break;
896  case AV_PIX_FMT_RGB32_1:
897 #if HAVE_BIGENDIAN
898  case AV_PIX_FMT_RGB24:
899 #endif
900  c->pal_rgb[i]= a + (b<<8) + (g<<16) + ((unsigned)r<<24);
901  break;
902  case AV_PIX_FMT_RGB32:
903 #if !HAVE_BIGENDIAN
904  case AV_PIX_FMT_BGR24:
905 #endif
906  default:
907  c->pal_rgb[i]= b + (g<<8) + (r<<16) + ((unsigned)a<<24);
908  }
909  }
910  }
911 
912  if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) {
913  uint8_t *base;
914  int x,y;
915  rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
916  if (!rgb0_tmp)
917  return AVERROR(ENOMEM);
918 
919  base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
920  for (y=0; y<srcSliceH; y++){
921  memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW);
922  for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) {
923  base[ srcStride[0]*y + x] = 0xFF;
924  }
925  }
926  src2[0] = base;
927  }
928 
929  if (c->srcXYZ && !(c->dstXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
930  uint8_t *base;
931  rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
932  if (!rgb0_tmp)
933  return AVERROR(ENOMEM);
934 
935  base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
936 
937  xyz12Torgb48(c, (uint16_t*)base, (const uint16_t*)src2[0], srcStride[0]/2, srcSliceH);
938  src2[0] = base;
939  }
940 
941  if (!srcSliceY && (c->flags & SWS_BITEXACT) && c->dither == SWS_DITHER_ED && c->dither_error[0])
942  for (i = 0; i < 4; i++)
943  memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (c->dstW+2));
944 
945  if (c->sliceDir != 1) {
946  // slices go from bottom to top => we flip the image internally
947  for (i=0; i<4; i++) {
948  srcStride2[i] *= -1;
949  dstStride2[i] *= -1;
950  }
951 
952  src2[0] += (srcSliceH - 1) * srcStride[0];
953  if (!usePal(c->srcFormat))
954  src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];
955  src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];
956  src2[3] += (srcSliceH - 1) * srcStride[3];
957  dst2[0] += ( c->dstH - 1) * dstStride[0];
958  dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];
959  dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];
960  dst2[3] += ( c->dstH - 1) * dstStride[3];
961 
962  srcSliceY_internal = c->srcH-srcSliceY-srcSliceH;
963  }
964  reset_ptr(src2, c->srcFormat);
965  reset_ptr((void*)dst2, c->dstFormat);
966 
967  /* reset slice direction at end of frame */
968  if (srcSliceY_internal + srcSliceH == c->srcH)
969  c->sliceDir = 0;
970  ret = c->swscale(c, src2, srcStride2, srcSliceY_internal, srcSliceH, dst2, dstStride2);
971 
972  if (c->dstXYZ && !(c->srcXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
973  int dstY = c->dstY ? c->dstY : srcSliceY + srcSliceH;
974  uint16_t *dst16 = (uint16_t*)(dst2[0] + (dstY - ret) * dstStride2[0]);
975  av_assert0(dstY >= ret);
976  av_assert0(ret >= 0);
977  av_assert0(c->dstH >= dstY);
978 
979  /* replace on the same data */
980  rgb48Toxyz12(c, dst16, dst16, dstStride2[0]/2, ret);
981  }
982 
983  av_free(rgb0_tmp);
984  return ret;
985 }
av_cold void ff_sws_init_swscale_aarch64(SwsContext *c)
Definition: swscale.c:32
static double val(void *priv, double ch)
Definition: aeval.c:76
static const char *const format[]
Definition: af_aiir.c:456
av_cold void ff_sws_init_swscale_arm(SwsContext *c)
Definition: swscale.c:32
__asm__(".macro parse_r var r\n\t" "\\var = -1\n\t" _IFC_REG(0) _IFC_REG(1) _IFC_REG(2) _IFC_REG(3) _IFC_REG(4) _IFC_REG(5) _IFC_REG(6) _IFC_REG(7) _IFC_REG(8) _IFC_REG(9) _IFC_REG(10) _IFC_REG(11) _IFC_REG(12) _IFC_REG(13) _IFC_REG(14) _IFC_REG(15) _IFC_REG(16) _IFC_REG(17) _IFC_REG(18) _IFC_REG(19) _IFC_REG(20) _IFC_REG(21) _IFC_REG(22) _IFC_REG(23) _IFC_REG(24) _IFC_REG(25) _IFC_REG(26) _IFC_REG(27) _IFC_REG(28) _IFC_REG(29) _IFC_REG(30) _IFC_REG(31) ".iflt \\var\n\t" ".error \"Unable to parse register name \\r\"\n\t" ".endif\n\t" ".endm")
#define av_always_inline
Definition: attributes.h:45
#define av_cold
Definition: attributes.h:88
uint8_t
int32_t
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
#define AV_RL16
Definition: intreadwrite.h:42
#define AV_RB16
Definition: intreadwrite.h:53
Convenience header that includes libavutil's core.
byte swapping routines
#define flags(name, subs,...)
Definition: cbs_av1.c:561
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:264
static av_always_inline void filter(int16_t *output, ptrdiff_t out_stride, const int16_t *low, ptrdiff_t low_stride, const int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhddsp.c:27
#define FFMIN(a, b)
Definition: common.h:105
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
#define FFMAX(a, b)
Definition: common.h:103
#define av_clip_uint8
Definition: common.h:128
#define av_clip_uintp2
Definition: common.h:146
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define ARCH_AARCH64
Definition: config.h:18
#define ARCH_PPC
Definition: config.h:30
#define ARCH_X86
Definition: config.h:39
#define ARCH_ARM
Definition: config.h:20
#define HAVE_MMXEXT
Definition: config.h:65
#define NULL
Definition: coverity.c:32
static atomic_int cpu_flags
Definition: cpu.c:50
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:95
#define AV_CPU_FLAG_SSE2
PIV SSE2 functions.
Definition: cpu.h:36
#define AV_CPU_FLAG_MMXEXT
SSE integer functions or AMD MMX ext.
Definition: cpu.h:32
static enum AVPixelFormat pix_fmt
int
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:117
#define SWS_BITEXACT
Definition: swscale.h:84
#define SWS_PRINT_INFO
Definition: swscale.h:75
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
int attribute_align_arg sws_scale(struct SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[])
swscale wrapper, so we don't need to export the SwsContext.
Definition: swscale.c:745
void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src1, const uint8_t *src2, int srcW, int xInc)
void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth, const uint8_t *src, int srcW, int xInc)
misc image utilities
RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT uint8_t * _dstV
Definition: input.c:398
uint16_t * dstV
Definition: input.c:403
int i
Definition: input.c:407
#define AV_WB16(p, v)
Definition: intreadwrite.h:405
#define AV_WL16(p, v)
Definition: intreadwrite.h:412
#define attribute_align_arg
Definition: internal.h:61
#define emms_c()
Definition: internal.h:54
const char * desc
Definition: libsvtav1.c:79
int stride
Definition: mace.c:144
const char data[16]
Definition: mxf.c:142
av_cold void ff_sws_init_output_funcs(SwsContext *c, yuv2planar1_fn *yuv2plane1, yuv2planarX_fn *yuv2planeX, yuv2interleavedX_fn *yuv2nv12cX, yuv2packed1_fn *yuv2packed1, yuv2packed2_fn *yuv2packed2, yuv2packedX_fn *yuv2packedX, yuv2anyX_fn *yuv2anyX)
Definition: output.c:2543
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2573
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
Definition: pixdesc.h:190
#define AV_PIX_FMT_FLAG_BE
Pixel format is big-endian.
Definition: pixdesc.h:128
#define AV_PIX_FMT_BGR32
Definition: pixfmt.h:374
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
@ AV_PIX_FMT_MONOBLACK
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb.
Definition: pixfmt.h:76
@ AV_PIX_FMT_GRAY8A
alias for AV_PIX_FMT_YA8
Definition: pixfmt.h:146
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:74
@ AV_PIX_FMT_RGB8
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:86
@ AV_PIX_FMT_BGR8
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:83
@ AV_PIX_FMT_RGB4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:88
@ AV_PIX_FMT_BGR4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:85
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:77
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
@ AV_PIX_FMT_MONOWHITE
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb.
Definition: pixfmt.h:75
#define AV_PIX_FMT_RGB32_1
Definition: pixfmt.h:373
#define AV_PIX_FMT_BGR32_1
Definition: pixfmt.h:375
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:372
int ff_init_slice_from_src(SwsSlice *s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative)
Definition: slice.c:147
int ff_rotate_slice(SwsSlice *s, int lum, int chr)
Definition: slice.c:119
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
Struct which holds all necessary data for processing a slice.
int available_lines
max number of lines that can be hold by this plane
int sliceY
index of first line
int sliceH
number of lines
Struct which defines a slice of an image to be scaled or an output for a scaled slice.
SwsPlane plane[MAX_SLICE_PLANES]
color planes
int width
Slice line width.
static void lumRangeToJpeg_c(int16_t *dst, int width)
Definition: swscale.c:179
const uint8_t ff_dither_8x8_128[9][8]
Definition: swscale.c:40
static void lumRangeFromJpeg_c(int16_t *dst, int width)
Definition: swscale.c:186
#define GY
#define BU
static int swscale(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: swscale.c:238
static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
Definition: swscale.c:142
static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
Definition: swscale.c:193
static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
Definition: swscale.c:126
#define DEBUG_BUFFERS(...)
Definition: swscale.c:234
static void reset_ptr(const uint8_t *src[], enum AVPixelFormat format)
Definition: swscale.c:600
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:527
#define RU
#define BY
static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst, const uint16_t *src, int stride, int h)
Definition: swscale.c:629
static av_always_inline void fillPlane(uint8_t *plane, int stride, int width, int height, int y, uint8_t val)
Definition: swscale.c:56
#define RV
static void lumRangeToJpeg16_c(int16_t *_dst, int width)
Definition: swscale.c:215
static av_cold void sws_init_swscale(SwsContext *c)
Definition: swscale.c:552
#define RY
static int check_image_pointers(const uint8_t *const data[4], enum AVPixelFormat pix_fmt, const int linesizes[4])
Definition: swscale.c:612
static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
Definition: swscale.c:97
static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
Definition: swscale.c:161
#define GV
static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
Definition: swscale.c:204
static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst, const uint16_t *src, int stride, int h)
Definition: swscale.c:685
static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
Definition: swscale.c:224
#define GU
static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
Definition: swscale.c:170
static const uint8_t sws_pb_64[8]
Definition: swscale.c:52
#define BV
#define RGB2YUV_SHIFT
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:584
static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
Definition: swscale.c:67
external API header
av_cold void ff_sws_init_swscale_ppc(SwsContext *c)
void(* yuv2planarX_fn)(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output with multi-point vertical scaling between...
int(* SwsFunc)(struct SwsContext *context, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
static void fillPlane16(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian)
static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
@ SWS_DITHER_ED
void(* yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output without any additional vertical scaling (...
void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX, yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2, yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx)
setup vertical scaler functions
Definition: vscale.c:257
static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
void(* yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc, const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc, uint8_t *dest, int dstW, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output without any additional v...
static void fillPlane32(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian, int is_float)
void(* yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t **dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to YUV/RGB output by doing multi-point vertical scaling...
void(* yuv2interleavedX_fn)(enum AVPixelFormat dstFormat, const uint8_t *chrDither, const int16_t *chrFilter, int chrFilterSize, const int16_t **chrUSrc, const int16_t **chrVSrc, uint8_t *dest, int dstW)
Write one line of horizontally scaled chroma to interleaved output with multi-point vertical scaling ...
void ff_updateMMXDitherTables(SwsContext *c, int dstY)
static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
void ff_sws_init_input_funcs(SwsContext *c)
static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt)
void(* yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing multi-point ver...
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
void(* yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2], const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc[2], uint8_t *dest, int dstW, int yalpha, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing bilinear scalin...
static void FUNC() yuv2planeX(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
#define av_free(p)
#define av_malloc(s)
#define av_log(a,...)
#define src
Definition: vp8dsp.c:255
#define height
#define width
#define isALPHA(x)
Definition: swscale.c:51
#define isGray(x)
Definition: swscale.c:40
const char * b
Definition: vf_curves.c:118
const char * g
Definition: vf_curves.c:117
const char * r
Definition: vf_curves.c:116
static void process(NormalizeContext *s, AVFrame *in, AVFrame *out)
Definition: vf_normalize.c:156
uint8_t bits
Definition: vp3data.h:141
uint8_t base
Definition: vp3data.h:141
static double c[64]
av_cold void ff_sws_init_swscale_x86(SwsContext *c)
Definition: swscale.c:355
return srcSliceH