32 #define INTERPOLATE_METHOD(name) \
33 static uint8_t name(float x, float y, const uint8_t *src, \
34 int width, int height, int stride, uint8_t def)
36 #define PIXEL(img, x, y, w, h, stride, def) \
37 ((x) < 0 || (y) < 0) ? (def) : \
38 (((x) >= (w) || (y) >= (h)) ? (def) : \
39 img[(x) + (y) * (stride)])
54 int x_c, x_f, y_c, y_f;
71 return (v1*(x - x_f)*(y - y_f) + v2*((x - x_f)*(y_c - y)) +
72 v3*(x_c - x)*(y - y_f) + v4*((x_c - x)*(y_c - y)));
81 int x_c, x_f, y_c, y_f;
98 f1 = 1 - sqrt((x_c - x) * (y_c - y));
99 f2 = 1 - sqrt((x_c - x) * (y - y_f));
100 f3 = 1 - sqrt((x - x_f) * (y_c - y));
101 f4 = 1 - sqrt((x - x_f) * (y - y_f));
102 return (v1 * f1 + v2 * f2 + v3 * f3 + v4 * f4) / (f1 + f2 + f3 + f4);
114 matrix[0] = scale_x * cos(angle);
115 matrix[1] = -sin(angle);
117 matrix[3] = -matrix[1];
118 matrix[4] = scale_y * cos(angle);
128 for (
i = 0;
i < 9;
i++)
129 result[
i] = m1[
i] + m2[
i];
135 for (
i = 0;
i < 9;
i++)
136 result[
i] = m1[
i] - m2[
i];
142 for (
i = 0;
i < 9;
i++)
143 result[
i] = m1[
i] * scalar;
147 int src_stride,
int dst_stride,
159 func = interpolate_nearest;
162 func = interpolate_bilinear;
165 func = interpolate_biquadratic;
171 for (y = 0; y <
height; y++) {
172 for(x = 0; x <
width; x++) {
173 x_s = x * matrix[0] + y * matrix[1] + matrix[2];
174 y_s = x * matrix[3] + y * matrix[4] + matrix[5];
178 def =
src[y * src_stride + x];
183 def =
src[(
int)y_s * src_stride + (
int)x_s];
191 def =
src[(
int)y_s * src_stride + (
int)x_s];
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
common internal and external API header
int(* func)(AVBPrint *dst, const char *in, const char *arg)
static av_always_inline av_const int avpriv_mirror(int x, int w)
static void interpolate(float *out, float v1, float v2, int size)