FFmpeg  4.4
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_MMAP
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return &LICENSE_PREFIX FFMPEG_LICENSE[sizeof(LICENSE_PREFIX) - 1];
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
98 static const FormatEntry format_entries[] = {
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
136  [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
137  [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
138  [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
139  [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
140  [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
141  [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
142  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
143  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
144  [AV_PIX_FMT_YUV440P] = { 1, 1 },
145  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
146  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
147  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
148  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
149  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
151  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
152  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
153  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
154  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
155  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
156  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
157  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
158  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
159  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
163  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
164  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
165  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
166  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
167  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
168  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
169  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
170  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
171  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
172  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
173  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
174  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
175  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
176  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
177  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
178  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
179  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
180  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
181  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
182  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
183  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
185  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
186  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
187  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
188  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
189  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
190  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
191  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
192  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
193  [AV_PIX_FMT_YA8] = { 1, 1 },
194  [AV_PIX_FMT_YA16BE] = { 1, 1 },
195  [AV_PIX_FMT_YA16LE] = { 1, 1 },
196  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
197  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
198  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
199  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
200  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
216  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
217  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
218  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
219  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
220  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
221  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
222  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
223  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
224  [AV_PIX_FMT_GBRP] = { 1, 1 },
225  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
228  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
229  [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
231  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
232  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
233  [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
234  [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
235  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
236  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
237  [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
238  [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
239  [AV_PIX_FMT_GBRPF32LE] = { 1, 1 },
240  [AV_PIX_FMT_GBRPF32BE] = { 1, 1 },
241  [AV_PIX_FMT_GBRAPF32LE] = { 1, 1 },
242  [AV_PIX_FMT_GBRAPF32BE] = { 1, 1 },
243  [AV_PIX_FMT_GBRAP] = { 1, 1 },
244  [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
245  [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
246  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
247  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
248  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
249  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
250  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
251  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
252  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
253  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
254  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
255  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
256  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
257  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
258  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
259  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
260  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
261  [AV_PIX_FMT_P010LE] = { 1, 1 },
262  [AV_PIX_FMT_P010BE] = { 1, 1 },
263  [AV_PIX_FMT_P016LE] = { 1, 1 },
264  [AV_PIX_FMT_P016BE] = { 1, 1 },
265  [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
266  [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
267  [AV_PIX_FMT_YUVA422P12BE] = { 1, 1 },
268  [AV_PIX_FMT_YUVA422P12LE] = { 1, 1 },
269  [AV_PIX_FMT_YUVA444P12BE] = { 1, 1 },
270  [AV_PIX_FMT_YUVA444P12LE] = { 1, 1 },
271  [AV_PIX_FMT_NV24] = { 1, 1 },
272  [AV_PIX_FMT_NV42] = { 1, 1 },
273  [AV_PIX_FMT_Y210LE] = { 1, 0 },
274  [AV_PIX_FMT_X2RGB10LE] = { 1, 1 },
275 };
276 
278 {
279  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
281 }
282 
284 {
285  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
287 }
288 
290 {
291  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
293 }
294 
295 static double getSplineCoeff(double a, double b, double c, double d,
296  double dist)
297 {
298  if (dist <= 1.0)
299  return ((d * dist + c) * dist + b) * dist + a;
300  else
301  return getSplineCoeff(0.0,
302  b + 2.0 * c + 3.0 * d,
303  c + 3.0 * d,
304  -b - 3.0 * c - 6.0 * d,
305  dist - 1.0);
306 }
307 
308 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
309 {
310  if (pos == -1 || pos <= -513) {
311  pos = (128 << chr_subsample) - 128;
312  }
313  pos += 128; // relative to ideal left edge
314  return pos >> chr_subsample;
315 }
316 
317 typedef struct {
318  int flag; ///< flag associated to the algorithm
319  const char *description; ///< human-readable description
320  int size_factor; ///< size factor used when initing the filters
322 
324  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
325  { SWS_BICUBIC, "bicubic", 4 },
326  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
327  { SWS_BILINEAR, "bilinear", 2 },
328  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
329  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
330  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
331  { SWS_POINT, "nearest neighbor / point", -1 },
332  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
333  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
334  { SWS_X, "experimental", 8 },
335 };
336 
337 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
338  int *outFilterSize, int xInc, int srcW,
339  int dstW, int filterAlign, int one,
340  int flags, int cpu_flags,
341  SwsVector *srcFilter, SwsVector *dstFilter,
342  double param[2], int srcPos, int dstPos)
343 {
344  int i;
345  int filterSize;
346  int filter2Size;
347  int minFilterSize;
348  int64_t *filter = NULL;
349  int64_t *filter2 = NULL;
350  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
351  int ret = -1;
352 
353  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
354 
355  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
356  if (!FF_ALLOC_TYPED_ARRAY(*filterPos, dstW + 3))
357  goto nomem;
358 
359  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
360  int i;
361  filterSize = 1;
362  if (!FF_ALLOCZ_TYPED_ARRAY(filter, dstW * filterSize))
363  goto nomem;
364 
365  for (i = 0; i < dstW; i++) {
366  filter[i * filterSize] = fone;
367  (*filterPos)[i] = i;
368  }
369  } else if (flags & SWS_POINT) { // lame looking point sampling mode
370  int i;
371  int64_t xDstInSrc;
372  filterSize = 1;
373  if (!FF_ALLOC_TYPED_ARRAY(filter, dstW * filterSize))
374  goto nomem;
375 
376  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
377  for (i = 0; i < dstW; i++) {
378  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
379 
380  (*filterPos)[i] = xx;
381  filter[i] = fone;
382  xDstInSrc += xInc;
383  }
384  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
385  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
386  int i;
387  int64_t xDstInSrc;
388  filterSize = 2;
389  if (!FF_ALLOC_TYPED_ARRAY(filter, dstW * filterSize))
390  goto nomem;
391 
392  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
393  for (i = 0; i < dstW; i++) {
394  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
395  int j;
396 
397  (*filterPos)[i] = xx;
398  // bilinear upscale / linear interpolate / area averaging
399  for (j = 0; j < filterSize; j++) {
400  int64_t coeff = fone - FFABS((int64_t)xx * (1 << 16) - xDstInSrc) * (fone >> 16);
401  if (coeff < 0)
402  coeff = 0;
403  filter[i * filterSize + j] = coeff;
404  xx++;
405  }
406  xDstInSrc += xInc;
407  }
408  } else {
409  int64_t xDstInSrc;
410  int sizeFactor = -1;
411 
412  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
413  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
414  sizeFactor = scale_algorithms[i].size_factor;
415  break;
416  }
417  }
418  if (flags & SWS_LANCZOS)
419  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
420  av_assert0(sizeFactor > 0);
421 
422  if (xInc <= 1 << 16)
423  filterSize = 1 + sizeFactor; // upscale
424  else
425  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
426 
427  filterSize = FFMIN(filterSize, srcW - 2);
428  filterSize = FFMAX(filterSize, 1);
429 
430  if (!FF_ALLOC_TYPED_ARRAY(filter, dstW * filterSize))
431  goto nomem;
432  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
433  for (i = 0; i < dstW; i++) {
434  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
435  int j;
436  (*filterPos)[i] = xx;
437  for (j = 0; j < filterSize; j++) {
438  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
439  double floatd;
440  int64_t coeff;
441 
442  if (xInc > 1 << 16)
443  d = d * dstW / srcW;
444  floatd = d * (1.0 / (1 << 30));
445 
446  if (flags & SWS_BICUBIC) {
447  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
448  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
449 
450  if (d >= 1LL << 31) {
451  coeff = 0.0;
452  } else {
453  int64_t dd = (d * d) >> 30;
454  int64_t ddd = (dd * d) >> 30;
455 
456  if (d < 1LL << 30)
457  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
458  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
459  (6 * (1 << 24) - 2 * B) * (1 << 30);
460  else
461  coeff = (-B - 6 * C) * ddd +
462  (6 * B + 30 * C) * dd +
463  (-12 * B - 48 * C) * d +
464  (8 * B + 24 * C) * (1 << 30);
465  }
466  coeff /= (1LL<<54)/fone;
467  } else if (flags & SWS_X) {
468  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
469  double c;
470 
471  if (floatd < 1.0)
472  c = cos(floatd * M_PI);
473  else
474  c = -1.0;
475  if (c < 0.0)
476  c = -pow(-c, A);
477  else
478  c = pow(c, A);
479  coeff = (c * 0.5 + 0.5) * fone;
480  } else if (flags & SWS_AREA) {
481  int64_t d2 = d - (1 << 29);
482  if (d2 * xInc < -(1LL << (29 + 16)))
483  coeff = 1.0 * (1LL << (30 + 16));
484  else if (d2 * xInc < (1LL << (29 + 16)))
485  coeff = -d2 * xInc + (1LL << (29 + 16));
486  else
487  coeff = 0.0;
488  coeff *= fone >> (30 + 16);
489  } else if (flags & SWS_GAUSS) {
490  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
491  coeff = exp2(-p * floatd * floatd) * fone;
492  } else if (flags & SWS_SINC) {
493  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
494  } else if (flags & SWS_LANCZOS) {
495  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
496  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
497  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
498  if (floatd > p)
499  coeff = 0;
500  } else if (flags & SWS_BILINEAR) {
501  coeff = (1 << 30) - d;
502  if (coeff < 0)
503  coeff = 0;
504  coeff *= fone >> 30;
505  } else if (flags & SWS_SPLINE) {
506  double p = -2.196152422706632;
507  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
508  } else {
509  av_assert0(0);
510  }
511 
512  filter[i * filterSize + j] = coeff;
513  xx++;
514  }
515  xDstInSrc += 2 * xInc;
516  }
517  }
518 
519  /* apply src & dst Filter to filter -> filter2
520  * av_free(filter);
521  */
522  av_assert0(filterSize > 0);
523  filter2Size = filterSize;
524  if (srcFilter)
525  filter2Size += srcFilter->length - 1;
526  if (dstFilter)
527  filter2Size += dstFilter->length - 1;
528  av_assert0(filter2Size > 0);
529  if (!FF_ALLOCZ_TYPED_ARRAY(filter2, dstW * filter2Size))
530  goto nomem;
531  for (i = 0; i < dstW; i++) {
532  int j, k;
533 
534  if (srcFilter) {
535  for (k = 0; k < srcFilter->length; k++) {
536  for (j = 0; j < filterSize; j++)
537  filter2[i * filter2Size + k + j] +=
538  srcFilter->coeff[k] * filter[i * filterSize + j];
539  }
540  } else {
541  for (j = 0; j < filterSize; j++)
542  filter2[i * filter2Size + j] = filter[i * filterSize + j];
543  }
544  // FIXME dstFilter
545 
546  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
547  }
548  av_freep(&filter);
549 
550  /* try to reduce the filter-size (step1 find size and shift left) */
551  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
552  minFilterSize = 0;
553  for (i = dstW - 1; i >= 0; i--) {
554  int min = filter2Size;
555  int j;
556  int64_t cutOff = 0.0;
557 
558  /* get rid of near zero elements on the left by shifting left */
559  for (j = 0; j < filter2Size; j++) {
560  int k;
561  cutOff += FFABS(filter2[i * filter2Size]);
562 
563  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
564  break;
565 
566  /* preserve monotonicity because the core can't handle the
567  * filter otherwise */
568  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
569  break;
570 
571  // move filter coefficients left
572  for (k = 1; k < filter2Size; k++)
573  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
574  filter2[i * filter2Size + k - 1] = 0;
575  (*filterPos)[i]++;
576  }
577 
578  cutOff = 0;
579  /* count near zeros on the right */
580  for (j = filter2Size - 1; j > 0; j--) {
581  cutOff += FFABS(filter2[i * filter2Size + j]);
582 
583  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
584  break;
585  min--;
586  }
587 
588  if (min > minFilterSize)
589  minFilterSize = min;
590  }
591 
592  if (PPC_ALTIVEC(cpu_flags)) {
593  // we can handle the special case 4, so we don't want to go the full 8
594  if (minFilterSize < 5)
595  filterAlign = 4;
596 
597  /* We really don't want to waste our time doing useless computation, so
598  * fall back on the scalar C code for very small filters.
599  * Vectorizing is worth it only if you have a decent-sized vector. */
600  if (minFilterSize < 3)
601  filterAlign = 1;
602  }
603 
605  // special case for unscaled vertical filtering
606  if (minFilterSize == 1 && filterAlign == 2)
607  filterAlign = 1;
608  }
609 
610  av_assert0(minFilterSize > 0);
611  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
612  av_assert0(filterSize > 0);
613  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
614  if (!filter)
615  goto nomem;
616  if (filterSize >= MAX_FILTER_SIZE * 16 /
617  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
618  ret = RETCODE_USE_CASCADE;
619  goto fail;
620  }
621  *outFilterSize = filterSize;
622 
623  if (flags & SWS_PRINT_INFO)
625  "SwScaler: reducing / aligning filtersize %d -> %d\n",
626  filter2Size, filterSize);
627  /* try to reduce the filter-size (step2 reduce it) */
628  for (i = 0; i < dstW; i++) {
629  int j;
630 
631  for (j = 0; j < filterSize; j++) {
632  if (j >= filter2Size)
633  filter[i * filterSize + j] = 0;
634  else
635  filter[i * filterSize + j] = filter2[i * filter2Size + j];
636  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
637  filter[i * filterSize + j] = 0;
638  }
639  }
640 
641  // FIXME try to align filterPos if possible
642 
643  // fix borders
644  for (i = 0; i < dstW; i++) {
645  int j;
646  if ((*filterPos)[i] < 0) {
647  // move filter coefficients left to compensate for filterPos
648  for (j = 1; j < filterSize; j++) {
649  int left = FFMAX(j + (*filterPos)[i], 0);
650  filter[i * filterSize + left] += filter[i * filterSize + j];
651  filter[i * filterSize + j] = 0;
652  }
653  (*filterPos)[i]= 0;
654  }
655 
656  if ((*filterPos)[i] + filterSize > srcW) {
657  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
658  int64_t acc = 0;
659 
660  for (j = filterSize - 1; j >= 0; j--) {
661  if ((*filterPos)[i] + j >= srcW) {
662  acc += filter[i * filterSize + j];
663  filter[i * filterSize + j] = 0;
664  }
665  }
666  for (j = filterSize - 1; j >= 0; j--) {
667  if (j < shift) {
668  filter[i * filterSize + j] = 0;
669  } else {
670  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
671  }
672  }
673 
674  (*filterPos)[i]-= shift;
675  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
676  }
677  av_assert0((*filterPos)[i] >= 0);
678  av_assert0((*filterPos)[i] < srcW);
679  if ((*filterPos)[i] + filterSize > srcW) {
680  for (j = 0; j < filterSize; j++) {
681  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
682  }
683  }
684  }
685 
686  // Note the +1 is for the MMX scaler which reads over the end
687  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
688  if (!FF_ALLOCZ_TYPED_ARRAY(*outFilter, *outFilterSize * (dstW + 3)))
689  goto nomem;
690 
691  /* normalize & store in outFilter */
692  for (i = 0; i < dstW; i++) {
693  int j;
694  int64_t error = 0;
695  int64_t sum = 0;
696 
697  for (j = 0; j < filterSize; j++) {
698  sum += filter[i * filterSize + j];
699  }
700  sum = (sum + one / 2) / one;
701  if (!sum) {
702  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
703  sum = 1;
704  }
705  for (j = 0; j < *outFilterSize; j++) {
706  int64_t v = filter[i * filterSize + j] + error;
707  int intV = ROUNDED_DIV(v, sum);
708  (*outFilter)[i * (*outFilterSize) + j] = intV;
709  error = v - intV * sum;
710  }
711  }
712 
713  (*filterPos)[dstW + 0] =
714  (*filterPos)[dstW + 1] =
715  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
716  * read over the end */
717  for (i = 0; i < *outFilterSize; i++) {
718  int k = (dstW - 1) * (*outFilterSize) + i;
719  (*outFilter)[k + 1 * (*outFilterSize)] =
720  (*outFilter)[k + 2 * (*outFilterSize)] =
721  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
722  }
723 
724  ret = 0;
725  goto done;
726 nomem:
727  ret = AVERROR(ENOMEM);
728 fail:
729  if(ret < 0)
730  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
731 done:
732  av_free(filter);
733  av_free(filter2);
734  return ret;
735 }
736 
737 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
738 {
739  int64_t W, V, Z, Cy, Cu, Cv;
740  int64_t vr = table[0];
741  int64_t ub = table[1];
742  int64_t ug = -table[2];
743  int64_t vg = -table[3];
744  int64_t ONE = 65536;
745  int64_t cy = ONE;
746  uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
747  int i;
748  static const int8_t map[] = {
749  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
750  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
751  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
752  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
753  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
754  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
755  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
756  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
757  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
758  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
759  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
760  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
763  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
764  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
767  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
768  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
771  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
772  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
773  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
774  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
775  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
776  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
777  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
778  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
779  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
780  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
781  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
782  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
783  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
784  };
785 
786  dstRange = 0; //FIXME range = 1 is handled elsewhere
787 
788  if (!dstRange) {
789  cy = cy * 255 / 219;
790  } else {
791  vr = vr * 224 / 255;
792  ub = ub * 224 / 255;
793  ug = ug * 224 / 255;
794  vg = vg * 224 / 255;
795  }
796  W = ROUNDED_DIV(ONE*ONE*ug, ub);
797  V = ROUNDED_DIV(ONE*ONE*vg, vr);
798  Z = ONE*ONE-W-V;
799 
800  Cy = ROUNDED_DIV(cy*Z, ONE);
801  Cu = ROUNDED_DIV(ub*Z, ONE);
802  Cv = ROUNDED_DIV(vr*Z, ONE);
803 
804  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
805  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
806  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
807 
808  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
809  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
810  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
811 
812  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
813  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
814  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
815 
816  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
817  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
818  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
819  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
820  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
821  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
822  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
823  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
824  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
825  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
826  }
827  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
828  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
829 }
830 
831 static void fill_xyztables(struct SwsContext *c)
832 {
833  int i;
834  double xyzgamma = XYZ_GAMMA;
835  double rgbgamma = 1.0 / RGB_GAMMA;
836  double xyzgammainv = 1.0 / XYZ_GAMMA;
837  double rgbgammainv = RGB_GAMMA;
838  static const int16_t xyz2rgb_matrix[3][4] = {
839  {13270, -6295, -2041},
840  {-3969, 7682, 170},
841  { 228, -835, 4329} };
842  static const int16_t rgb2xyz_matrix[3][4] = {
843  {1689, 1464, 739},
844  { 871, 2929, 296},
845  { 79, 488, 3891} };
846  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
847 
848  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
849  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
850  c->xyzgamma = xyzgamma_tab;
851  c->rgbgamma = rgbgamma_tab;
852  c->xyzgammainv = xyzgammainv_tab;
853  c->rgbgammainv = rgbgammainv_tab;
854 
855  if (rgbgamma_tab[4095])
856  return;
857 
858  /* set gamma vectors */
859  for (i = 0; i < 4096; i++) {
860  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
861  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
862  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
863  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
864  }
865 }
866 
868 {
869  return !isYUV(format) && !isGray(format);
870 }
871 
872 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
873  int srcRange, const int table[4], int dstRange,
874  int brightness, int contrast, int saturation)
875 {
876  const AVPixFmtDescriptor *desc_dst;
877  const AVPixFmtDescriptor *desc_src;
878  int need_reinit = 0;
879 
880  handle_formats(c);
881  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
882  desc_src = av_pix_fmt_desc_get(c->srcFormat);
883 
884  if(range_override_needed(c->dstFormat))
885  dstRange = 0;
886  if(range_override_needed(c->srcFormat))
887  srcRange = 0;
888 
889  if (c->srcRange != srcRange ||
890  c->dstRange != dstRange ||
891  c->brightness != brightness ||
892  c->contrast != contrast ||
893  c->saturation != saturation ||
894  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
895  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
896  )
897  need_reinit = 1;
898 
899  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
900  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
901 
902 
903 
904  c->brightness = brightness;
905  c->contrast = contrast;
906  c->saturation = saturation;
907  c->srcRange = srcRange;
908  c->dstRange = dstRange;
909 
910  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
911  //and what we have in ticket 2939 looks better with this check
912  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
914 
915  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
916  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
917 
918  if (c->cascaded_context[c->cascaded_mainindex])
919  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
920 
921  if (!need_reinit)
922  return 0;
923 
924  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
925  if (!c->cascaded_context[0] &&
926  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
927  c->srcW && c->srcH && c->dstW && c->dstH) {
928  enum AVPixelFormat tmp_format;
929  int tmp_width, tmp_height;
930  int srcW = c->srcW;
931  int srcH = c->srcH;
932  int dstW = c->dstW;
933  int dstH = c->dstH;
934  int ret;
935  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
936 
937  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
938  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
939  tmp_format = AV_PIX_FMT_BGRA64;
940  } else {
941  tmp_format = AV_PIX_FMT_BGR48;
942  }
943  } else {
944  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
945  tmp_format = AV_PIX_FMT_BGRA;
946  } else {
947  tmp_format = AV_PIX_FMT_BGR24;
948  }
949  }
950 
951  if (srcW*srcH > dstW*dstH) {
952  tmp_width = dstW;
953  tmp_height = dstH;
954  } else {
955  tmp_width = srcW;
956  tmp_height = srcH;
957  }
958 
959  ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
960  tmp_width, tmp_height, tmp_format, 64);
961  if (ret < 0)
962  return ret;
963 
964  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
965  tmp_width, tmp_height, tmp_format,
966  c->flags, c->param);
967  if (!c->cascaded_context[0])
968  return -1;
969 
970  c->cascaded_context[0]->alphablend = c->alphablend;
971  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
972  if (ret < 0)
973  return ret;
974  //we set both src and dst depending on that the RGB side will be ignored
975  sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
976  srcRange, table, dstRange,
977  brightness, contrast, saturation);
978 
979  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
980  dstW, dstH, c->dstFormat,
981  c->flags, NULL, NULL, c->param);
982  if (!c->cascaded_context[1])
983  return -1;
984  sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
985  srcRange, table, dstRange,
986  0, 1 << 16, 1 << 16);
987  return 0;
988  }
989  return -1;
990  }
991 
992  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
993  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
994  contrast, saturation);
995  // FIXME factorize
996 
997  if (ARCH_PPC)
998  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
999  contrast, saturation);
1000  }
1001 
1002  fill_rgb2yuv_table(c, table, dstRange);
1003 
1004  return 0;
1005 }
1006 
1007 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
1008  int *srcRange, int **table, int *dstRange,
1009  int *brightness, int *contrast, int *saturation)
1010 {
1011  if (!c )
1012  return -1;
1013 
1014  *inv_table = c->srcColorspaceTable;
1015  *table = c->dstColorspaceTable;
1016  *srcRange = range_override_needed(c->srcFormat) ? 1 : c->srcRange;
1017  *dstRange = range_override_needed(c->dstFormat) ? 1 : c->dstRange;
1018  *brightness = c->brightness;
1019  *contrast = c->contrast;
1020  *saturation = c->saturation;
1021 
1022  return 0;
1023 }
1024 
1026 {
1027  switch (*format) {
1028  case AV_PIX_FMT_YUVJ420P:
1030  return 1;
1031  case AV_PIX_FMT_YUVJ411P:
1033  return 1;
1034  case AV_PIX_FMT_YUVJ422P:
1036  return 1;
1037  case AV_PIX_FMT_YUVJ444P:
1039  return 1;
1040  case AV_PIX_FMT_YUVJ440P:
1042  return 1;
1043  case AV_PIX_FMT_GRAY8:
1044  case AV_PIX_FMT_YA8:
1045  case AV_PIX_FMT_GRAY9LE:
1046  case AV_PIX_FMT_GRAY9BE:
1047  case AV_PIX_FMT_GRAY10LE:
1048  case AV_PIX_FMT_GRAY10BE:
1049  case AV_PIX_FMT_GRAY12LE:
1050  case AV_PIX_FMT_GRAY12BE:
1051  case AV_PIX_FMT_GRAY14LE:
1052  case AV_PIX_FMT_GRAY14BE:
1053  case AV_PIX_FMT_GRAY16LE:
1054  case AV_PIX_FMT_GRAY16BE:
1055  case AV_PIX_FMT_YA16BE:
1056  case AV_PIX_FMT_YA16LE:
1057  return 1;
1058  default:
1059  return 0;
1060  }
1061 }
1062 
1064 {
1065  switch (*format) {
1066  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1067  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1068  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1069  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1070  default: return 0;
1071  }
1072 }
1073 
1075 {
1076  switch (*format) {
1077  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1078  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1079  default: return 0;
1080  }
1081 }
1082 
1084 {
1085  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1086  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1087  c->srcXYZ |= handle_xyz(&c->srcFormat);
1088  c->dstXYZ |= handle_xyz(&c->dstFormat);
1089  if (c->srcXYZ || c->dstXYZ)
1090  fill_xyztables(c);
1091 }
1092 
1094 {
1095  SwsContext *c = av_mallocz(sizeof(SwsContext));
1096 
1097  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1098 
1099  if (c) {
1100  c->av_class = &ff_sws_context_class;
1102  }
1103 
1104  return c;
1105 }
1106 
1107 static uint16_t * alloc_gamma_tbl(double e)
1108 {
1109  int i = 0;
1110  uint16_t * tbl;
1111  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1112  if (!tbl)
1113  return NULL;
1114 
1115  for (i = 0; i < 65536; ++i) {
1116  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1117  }
1118  return tbl;
1119 }
1120 
1121 static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
1122 {
1123  switch(fmt) {
1124  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1125  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1126  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1127  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1128  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1129 
1133 
1134  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1135 
1138 
1141 
1144 
1149 
1150  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1151  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1152 
1171 
1172 // case AV_PIX_FMT_AYUV64LE:
1173 // case AV_PIX_FMT_AYUV64BE:
1174 // case AV_PIX_FMT_PAL8:
1175  default: return AV_PIX_FMT_NONE;
1176  }
1177 }
1178 
1180  SwsFilter *dstFilter)
1181 {
1182  int i;
1183  int usesVFilter, usesHFilter;
1184  int unscaled;
1185  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1186  int srcW = c->srcW;
1187  int srcH = c->srcH;
1188  int dstW = c->dstW;
1189  int dstH = c->dstH;
1190  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1191  int flags, cpu_flags;
1192  enum AVPixelFormat srcFormat = c->srcFormat;
1193  enum AVPixelFormat dstFormat = c->dstFormat;
1194  const AVPixFmtDescriptor *desc_src;
1195  const AVPixFmtDescriptor *desc_dst;
1196  int ret = 0;
1197  enum AVPixelFormat tmpFmt;
1198  static const float float_mult = 1.0f / 255.0f;
1199 
1201  flags = c->flags;
1202  emms_c();
1203  if (!rgb15to16)
1205 
1206  unscaled = (srcW == dstW && srcH == dstH);
1207 
1208  c->srcRange |= handle_jpeg(&c->srcFormat);
1209  c->dstRange |= handle_jpeg(&c->dstFormat);
1210 
1211  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1212  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1213 
1214  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1217  c->dstRange, 0, 1 << 16, 1 << 16);
1218 
1219  handle_formats(c);
1220  srcFormat = c->srcFormat;
1221  dstFormat = c->dstFormat;
1222  desc_src = av_pix_fmt_desc_get(srcFormat);
1223  desc_dst = av_pix_fmt_desc_get(dstFormat);
1224 
1225  // If the source has no alpha then disable alpha blendaway
1226  if (c->src0Alpha)
1227  c->alphablend = SWS_ALPHA_BLEND_NONE;
1228 
1229  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1230  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1231  if (!sws_isSupportedInput(srcFormat)) {
1232  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1233  av_get_pix_fmt_name(srcFormat));
1234  return AVERROR(EINVAL);
1235  }
1236  if (!sws_isSupportedOutput(dstFormat)) {
1237  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1238  av_get_pix_fmt_name(dstFormat));
1239  return AVERROR(EINVAL);
1240  }
1241  }
1242  av_assert2(desc_src && desc_dst);
1243 
1244  i = flags & (SWS_POINT |
1245  SWS_AREA |
1246  SWS_BILINEAR |
1248  SWS_BICUBIC |
1249  SWS_X |
1250  SWS_GAUSS |
1251  SWS_LANCZOS |
1252  SWS_SINC |
1253  SWS_SPLINE |
1254  SWS_BICUBLIN);
1255 
1256  /* provide a default scaler if not set by caller */
1257  if (!i) {
1258  if (dstW < srcW && dstH < srcH)
1259  flags |= SWS_BICUBIC;
1260  else if (dstW > srcW && dstH > srcH)
1261  flags |= SWS_BICUBIC;
1262  else
1263  flags |= SWS_BICUBIC;
1264  c->flags = flags;
1265  } else if (i & (i - 1)) {
1267  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1268  return AVERROR(EINVAL);
1269  }
1270  /* sanity check */
1271  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1272  /* FIXME check if these are enough and try to lower them after
1273  * fixing the relevant parts of the code */
1274  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1275  srcW, srcH, dstW, dstH);
1276  return AVERROR(EINVAL);
1277  }
1278  if (flags & SWS_FAST_BILINEAR) {
1279  if (srcW < 8 || dstW < 8) {
1281  c->flags = flags;
1282  }
1283  }
1284 
1285  if (!dstFilter)
1286  dstFilter = &dummyFilter;
1287  if (!srcFilter)
1288  srcFilter = &dummyFilter;
1289 
1290  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1291  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1292  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1293  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1294  c->vRounder = 4 * 0x0001000100010001ULL;
1295 
1296  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1297  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1298  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1299  (dstFilter->chrV && dstFilter->chrV->length > 1);
1300  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1301  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1302  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1303  (dstFilter->chrH && dstFilter->chrH->length > 1);
1304 
1305  av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
1306  av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
1307 
1308  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1309  if (dstW&1) {
1310  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1312  c->flags = flags;
1313  }
1314 
1315  if ( c->chrSrcHSubSample == 0
1316  && c->chrSrcVSubSample == 0
1317  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1318  && !(c->flags & SWS_FAST_BILINEAR)
1319  ) {
1320  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1322  c->flags = flags;
1323  }
1324  }
1325 
1326  if (c->dither == SWS_DITHER_AUTO) {
1327  if (flags & SWS_ERROR_DIFFUSION)
1328  c->dither = SWS_DITHER_ED;
1329  }
1330 
1331  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1332  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1333  dstFormat == AV_PIX_FMT_BGR8 ||
1334  dstFormat == AV_PIX_FMT_RGB8) {
1335  if (c->dither == SWS_DITHER_AUTO)
1337  if (!(flags & SWS_FULL_CHR_H_INT)) {
1338  if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
1340  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1341  av_get_pix_fmt_name(dstFormat));
1343  c->flags = flags;
1344  }
1345  }
1346  if (flags & SWS_FULL_CHR_H_INT) {
1347  if (c->dither == SWS_DITHER_BAYER) {
1349  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1350  av_get_pix_fmt_name(dstFormat));
1351  c->dither = SWS_DITHER_ED;
1352  }
1353  }
1354  }
1355  if (isPlanarRGB(dstFormat)) {
1356  if (!(flags & SWS_FULL_CHR_H_INT)) {
1358  "%s output is not supported with half chroma resolution, switching to full\n",
1359  av_get_pix_fmt_name(dstFormat));
1361  c->flags = flags;
1362  }
1363  }
1364 
1365  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1366  * chroma interpolation */
1367  if (flags & SWS_FULL_CHR_H_INT &&
1368  isAnyRGB(dstFormat) &&
1369  !isPlanarRGB(dstFormat) &&
1370  dstFormat != AV_PIX_FMT_RGBA64LE &&
1371  dstFormat != AV_PIX_FMT_RGBA64BE &&
1372  dstFormat != AV_PIX_FMT_BGRA64LE &&
1373  dstFormat != AV_PIX_FMT_BGRA64BE &&
1374  dstFormat != AV_PIX_FMT_RGB48LE &&
1375  dstFormat != AV_PIX_FMT_RGB48BE &&
1376  dstFormat != AV_PIX_FMT_BGR48LE &&
1377  dstFormat != AV_PIX_FMT_BGR48BE &&
1378  dstFormat != AV_PIX_FMT_RGBA &&
1379  dstFormat != AV_PIX_FMT_ARGB &&
1380  dstFormat != AV_PIX_FMT_BGRA &&
1381  dstFormat != AV_PIX_FMT_ABGR &&
1382  dstFormat != AV_PIX_FMT_RGB24 &&
1383  dstFormat != AV_PIX_FMT_BGR24 &&
1384  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1385  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1386  dstFormat != AV_PIX_FMT_BGR8 &&
1387  dstFormat != AV_PIX_FMT_RGB8
1388  ) {
1390  "full chroma interpolation for destination format '%s' not yet implemented\n",
1391  av_get_pix_fmt_name(dstFormat));
1393  c->flags = flags;
1394  }
1395  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1396  c->chrDstHSubSample = 1;
1397 
1398  // drop some chroma lines if the user wants it
1399  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1401  c->chrSrcVSubSample += c->vChrDrop;
1402 
1403  /* drop every other pixel for chroma calculation unless user
1404  * wants full chroma */
1405  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1406  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1407  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1408  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1409  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1410  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1411  srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
1412  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1413  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1414  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1415  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1416  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1417  srcFormat != AV_PIX_FMT_GBRPF32BE && srcFormat != AV_PIX_FMT_GBRPF32LE &&
1418  srcFormat != AV_PIX_FMT_GBRAPF32BE && srcFormat != AV_PIX_FMT_GBRAPF32LE &&
1419  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1420  (flags & SWS_FAST_BILINEAR)))
1421  c->chrSrcHSubSample = 1;
1422 
1423  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1424  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1425  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1426  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1427  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1428 
1429  if (!FF_ALLOCZ_TYPED_ARRAY(c->formatConvBuffer, FFALIGN(srcW * 2 + 78, 16) * 2))
1430  goto nomem;
1431 
1432  c->srcBpc = desc_src->comp[0].depth;
1433  if (c->srcBpc < 8)
1434  c->srcBpc = 8;
1435  c->dstBpc = desc_dst->comp[0].depth;
1436  if (c->dstBpc < 8)
1437  c->dstBpc = 8;
1438  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1439  c->srcBpc = 16;
1440  if (c->dstBpc == 16)
1441  dst_stride <<= 1;
1442 
1443  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1444  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1445  c->chrDstW >= c->chrSrcW &&
1446  (srcW & 15) == 0;
1447  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1448 
1449  && (flags & SWS_FAST_BILINEAR)) {
1450  if (flags & SWS_PRINT_INFO)
1451  av_log(c, AV_LOG_INFO,
1452  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1453  }
1454  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1455  c->canMMXEXTBeUsed = 0;
1456  } else
1457  c->canMMXEXTBeUsed = 0;
1458 
1459  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1460  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1461 
1462  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1463  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1464  * correct scaling.
1465  * n-2 is the last chrominance sample available.
1466  * This is not perfect, but no one should notice the difference, the more
1467  * correct variant would be like the vertical one, but that would require
1468  * some special code for the first and last pixel */
1469  if (flags & SWS_FAST_BILINEAR) {
1470  if (c->canMMXEXTBeUsed) {
1471  c->lumXInc += 20;
1472  c->chrXInc += 20;
1473  }
1474  // we don't use the x86 asm scaler if MMX is available
1475  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1476  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1477  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1478  }
1479  }
1480 
1481  // hardcoded for now
1482  c->gamma_value = 2.2;
1483  tmpFmt = AV_PIX_FMT_RGBA64LE;
1484 
1485 
1486  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1487  SwsContext *c2;
1488  c->cascaded_context[0] = NULL;
1489 
1490  ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
1491  srcW, srcH, tmpFmt, 64);
1492  if (ret < 0)
1493  return ret;
1494 
1495  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1496  srcW, srcH, tmpFmt,
1497  flags, NULL, NULL, c->param);
1498  if (!c->cascaded_context[0]) {
1499  return AVERROR(ENOMEM);
1500  }
1501 
1502  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1503  dstW, dstH, tmpFmt,
1504  flags, srcFilter, dstFilter, c->param);
1505 
1506  if (!c->cascaded_context[1])
1507  return AVERROR(ENOMEM);
1508 
1509  c2 = c->cascaded_context[1];
1510  c2->is_internal_gamma = 1;
1511  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1512  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1513  if (!c2->gamma || !c2->inv_gamma)
1514  return AVERROR(ENOMEM);
1515 
1516  // is_internal_flag is set after creating the context
1517  // to properly create the gamma convert FilterDescriptor
1518  // we have to re-initialize it
1520  if ((ret = ff_init_filters(c2)) < 0) {
1522  c->cascaded_context[1] = NULL;
1523  return ret;
1524  }
1525 
1526  c->cascaded_context[2] = NULL;
1527  if (dstFormat != tmpFmt) {
1528  ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
1529  dstW, dstH, tmpFmt, 64);
1530  if (ret < 0)
1531  return ret;
1532 
1533  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1534  dstW, dstH, dstFormat,
1535  flags, NULL, NULL, c->param);
1536  if (!c->cascaded_context[2])
1537  return AVERROR(ENOMEM);
1538  }
1539  return 0;
1540  }
1541 
1542  if (isBayer(srcFormat)) {
1543  if (!unscaled ||
1544  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P &&
1545  dstFormat != AV_PIX_FMT_RGB48)) {
1546  enum AVPixelFormat tmpFormat = isBayer16BPS(srcFormat) ? AV_PIX_FMT_RGB48 : AV_PIX_FMT_RGB24;
1547 
1548  ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
1549  srcW, srcH, tmpFormat, 64);
1550  if (ret < 0)
1551  return ret;
1552 
1553  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1554  srcW, srcH, tmpFormat,
1555  flags, srcFilter, NULL, c->param);
1556  if (!c->cascaded_context[0])
1557  return AVERROR(ENOMEM);
1558 
1559  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1560  dstW, dstH, dstFormat,
1561  flags, NULL, dstFilter, c->param);
1562  if (!c->cascaded_context[1])
1563  return AVERROR(ENOMEM);
1564  return 0;
1565  }
1566  }
1567 
1568  if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
1569  for (i = 0; i < 256; ++i){
1570  c->uint2float_lut[i] = (float)i * float_mult;
1571  }
1572  }
1573 
1574  // float will be converted to uint16_t
1575  if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
1576  (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
1577  dstFormat != AV_PIX_FMT_GRAY8))){
1578  c->srcBpc = 16;
1579  }
1580 
1581  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1582  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1583 
1584  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE) {
1585  if (!unscaled ||
1586  dstFormat != tmpFormat ||
1587  usesHFilter || usesVFilter ||
1588  c->srcRange != c->dstRange
1589  ) {
1590  c->cascaded_mainindex = 1;
1591  ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
1592  srcW, srcH, tmpFormat, 64);
1593  if (ret < 0)
1594  return ret;
1595 
1596  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1597  srcW, srcH, tmpFormat,
1598  flags, c->param);
1599  if (!c->cascaded_context[0])
1600  return AVERROR(EINVAL);
1601  c->cascaded_context[0]->alphablend = c->alphablend;
1602  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1603  if (ret < 0)
1604  return ret;
1605 
1606  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1607  dstW, dstH, dstFormat,
1608  flags, c->param);
1609  if (!c->cascaded_context[1])
1610  return AVERROR(EINVAL);
1611 
1612  c->cascaded_context[1]->srcRange = c->srcRange;
1613  c->cascaded_context[1]->dstRange = c->dstRange;
1614  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1615  if (ret < 0)
1616  return ret;
1617 
1618  return 0;
1619  }
1620  }
1621  }
1622 
1623 #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
1624 #define USE_MMAP 1
1625 #else
1626 #define USE_MMAP 0
1627 #endif
1628 
1629  /* precalculate horizontal scaler filter coefficients */
1630  {
1631 #if HAVE_MMXEXT_INLINE
1632 // can't downscale !!!
1633  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1634  c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
1635  NULL, NULL, 8);
1636  c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
1637  NULL, NULL, NULL, 4);
1638 
1639 #if USE_MMAP
1640  c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
1641  PROT_READ | PROT_WRITE,
1642  MAP_PRIVATE | MAP_ANONYMOUS,
1643  -1, 0);
1644  c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
1645  PROT_READ | PROT_WRITE,
1646  MAP_PRIVATE | MAP_ANONYMOUS,
1647  -1, 0);
1648 #elif HAVE_VIRTUALALLOC
1649  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1650  c->lumMmxextFilterCodeSize,
1651  MEM_COMMIT,
1652  PAGE_EXECUTE_READWRITE);
1653  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1654  c->chrMmxextFilterCodeSize,
1655  MEM_COMMIT,
1656  PAGE_EXECUTE_READWRITE);
1657 #else
1658  c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
1659  c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
1660 #endif
1661 
1662 #ifdef MAP_ANONYMOUS
1663  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1664 #else
1665  if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
1666 #endif
1667  {
1668  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1669  return AVERROR(ENOMEM);
1670  }
1671 
1672  if (!FF_ALLOCZ_TYPED_ARRAY(c->hLumFilter, dstW / 8 + 8) ||
1673  !FF_ALLOCZ_TYPED_ARRAY(c->hChrFilter, c->chrDstW / 4 + 8) ||
1674  !FF_ALLOCZ_TYPED_ARRAY(c->hLumFilterPos, dstW / 2 / 8 + 8) ||
1675  !FF_ALLOCZ_TYPED_ARRAY(c->hChrFilterPos, c->chrDstW / 2 / 4 + 8))
1676  goto nomem;
1677 
1678  ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
1679  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1680  ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
1681  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1682 
1683 #if USE_MMAP
1684  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1685  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1686  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1687  ret = AVERROR(EINVAL);
1688  goto fail;
1689  }
1690 #endif
1691  } else
1692 #endif /* HAVE_MMXEXT_INLINE */
1693  {
1694  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1695  PPC_ALTIVEC(cpu_flags) ? 8 :
1696  have_neon(cpu_flags) ? 8 : 1;
1697 
1698  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1699  &c->hLumFilterSize, c->lumXInc,
1700  srcW, dstW, filterAlign, 1 << 14,
1702  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1703  c->param,
1704  get_local_pos(c, 0, 0, 0),
1705  get_local_pos(c, 0, 0, 0))) < 0)
1706  goto fail;
1707  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1708  &c->hChrFilterSize, c->chrXInc,
1709  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1711  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1712  c->param,
1713  get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
1714  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1715  goto fail;
1716  }
1717  } // initialize horizontal stuff
1718 
1719  /* precalculate vertical scaler filter coefficients */
1720  {
1721  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1722  PPC_ALTIVEC(cpu_flags) ? 8 :
1723  have_neon(cpu_flags) ? 2 : 1;
1724 
1725  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1726  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1728  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1729  c->param,
1730  get_local_pos(c, 0, 0, 1),
1731  get_local_pos(c, 0, 0, 1))) < 0)
1732  goto fail;
1733  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1734  c->chrYInc, c->chrSrcH, c->chrDstH,
1735  filterAlign, (1 << 12),
1737  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1738  c->param,
1739  get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
1740  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1741 
1742  goto fail;
1743 
1744 #if HAVE_ALTIVEC
1745  if (!FF_ALLOC_TYPED_ARRAY(c->vYCoeffsBank, c->vLumFilterSize * c->dstH) ||
1746  !FF_ALLOC_TYPED_ARRAY(c->vCCoeffsBank, c->vChrFilterSize * c->chrDstH))
1747  goto nomem;
1748 
1749  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1750  int j;
1751  short *p = (short *)&c->vYCoeffsBank[i];
1752  for (j = 0; j < 8; j++)
1753  p[j] = c->vLumFilter[i];
1754  }
1755 
1756  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1757  int j;
1758  short *p = (short *)&c->vCCoeffsBank[i];
1759  for (j = 0; j < 8; j++)
1760  p[j] = c->vChrFilter[i];
1761  }
1762 #endif
1763  }
1764 
1765  for (i = 0; i < 4; i++)
1766  if (!FF_ALLOCZ_TYPED_ARRAY(c->dither_error[i], c->dstW + 2))
1767  goto nomem;
1768 
1769  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1770 
1771  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1772  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1773  c->uv_offx2 = dst_stride + 16;
1774 
1775  av_assert0(c->chrDstH <= dstH);
1776 
1777  if (flags & SWS_PRINT_INFO) {
1778  const char *scaler = NULL, *cpucaps;
1779 
1780  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1781  if (flags & scale_algorithms[i].flag) {
1782  scaler = scale_algorithms[i].description;
1783  break;
1784  }
1785  }
1786  if (!scaler)
1787  scaler = "ehh flags invalid?!";
1788  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1789  scaler,
1790  av_get_pix_fmt_name(srcFormat),
1791 #ifdef DITHER1XBPP
1792  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1793  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1794  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1795  "dithered " : "",
1796 #else
1797  "",
1798 #endif
1799  av_get_pix_fmt_name(dstFormat));
1800 
1801  if (INLINE_MMXEXT(cpu_flags))
1802  cpucaps = "MMXEXT";
1803  else if (INLINE_AMD3DNOW(cpu_flags))
1804  cpucaps = "3DNOW";
1805  else if (INLINE_MMX(cpu_flags))
1806  cpucaps = "MMX";
1807  else if (PPC_ALTIVEC(cpu_flags))
1808  cpucaps = "AltiVec";
1809  else
1810  cpucaps = "C";
1811 
1812  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1813 
1814  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1816  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1817  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1819  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1820  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1821  c->chrXInc, c->chrYInc);
1822  }
1823 
1824  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1825  if (unscaled && !usesHFilter && !usesVFilter &&
1826  c->alphablend != SWS_ALPHA_BLEND_NONE &&
1827  isALPHA(srcFormat) &&
1828  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1829  alphaless_fmt(srcFormat) == dstFormat
1830  ) {
1831  c->swscale = ff_sws_alphablendaway;
1832 
1833  if (flags & SWS_PRINT_INFO)
1834  av_log(c, AV_LOG_INFO,
1835  "using alpha blendaway %s -> %s special converter\n",
1836  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1837  return 0;
1838  }
1839 
1840  /* unscaled special cases */
1841  if (unscaled && !usesHFilter && !usesVFilter &&
1842  (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
1843  isFloat(srcFormat) || isFloat(dstFormat))){
1845 
1846  if (c->swscale) {
1847  if (flags & SWS_PRINT_INFO)
1848  av_log(c, AV_LOG_INFO,
1849  "using unscaled %s -> %s special converter\n",
1850  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1851  return 0;
1852  }
1853  }
1854 
1855  c->swscale = ff_getSwsFunc(c);
1856  return ff_init_filters(c);
1857 nomem:
1858  ret = AVERROR(ENOMEM);
1859 fail: // FIXME replace things by appropriate error codes
1860  if (ret == RETCODE_USE_CASCADE) {
1861  int tmpW = sqrt(srcW * (int64_t)dstW);
1862  int tmpH = sqrt(srcH * (int64_t)dstH);
1863  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1864 
1865  if (isALPHA(srcFormat))
1866  tmpFormat = AV_PIX_FMT_YUVA420P;
1867 
1868  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1869  return AVERROR(EINVAL);
1870 
1871  ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
1872  tmpW, tmpH, tmpFormat, 64);
1873  if (ret < 0)
1874  return ret;
1875 
1876  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1877  tmpW, tmpH, tmpFormat,
1878  flags, srcFilter, NULL, c->param);
1879  if (!c->cascaded_context[0])
1880  return AVERROR(ENOMEM);
1881 
1882  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1883  dstW, dstH, dstFormat,
1884  flags, NULL, dstFilter, c->param);
1885  if (!c->cascaded_context[1])
1886  return AVERROR(ENOMEM);
1887  return 0;
1888  }
1889  return ret;
1890 }
1891 
1892 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1893  int dstW, int dstH, enum AVPixelFormat dstFormat,
1894  int flags, const double *param)
1895 {
1896  SwsContext *c;
1897 
1898  if (!(c = sws_alloc_context()))
1899  return NULL;
1900 
1901  c->flags = flags;
1902  c->srcW = srcW;
1903  c->srcH = srcH;
1904  c->dstW = dstW;
1905  c->dstH = dstH;
1906  c->srcFormat = srcFormat;
1907  c->dstFormat = dstFormat;
1908 
1909  if (param) {
1910  c->param[0] = param[0];
1911  c->param[1] = param[1];
1912  }
1913 
1914  return c;
1915 }
1916 
1917 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1918  int dstW, int dstH, enum AVPixelFormat dstFormat,
1919  int flags, SwsFilter *srcFilter,
1920  SwsFilter *dstFilter, const double *param)
1921 {
1922  SwsContext *c;
1923 
1924  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1925  dstW, dstH, dstFormat,
1926  flags, param);
1927  if (!c)
1928  return NULL;
1929 
1930  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1931  sws_freeContext(c);
1932  return NULL;
1933  }
1934 
1935  return c;
1936 }
1937 
1938 static int isnan_vec(SwsVector *a)
1939 {
1940  int i;
1941  for (i=0; i<a->length; i++)
1942  if (isnan(a->coeff[i]))
1943  return 1;
1944  return 0;
1945 }
1946 
1947 static void makenan_vec(SwsVector *a)
1948 {
1949  int i;
1950  for (i=0; i<a->length; i++)
1951  a->coeff[i] = NAN;
1952 }
1953 
1954 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1955  float lumaSharpen, float chromaSharpen,
1956  float chromaHShift, float chromaVShift,
1957  int verbose)
1958 {
1959  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1960  if (!filter)
1961  return NULL;
1962 
1963  if (lumaGBlur != 0.0) {
1964  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1965  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1966  } else {
1967  filter->lumH = sws_getIdentityVec();
1968  filter->lumV = sws_getIdentityVec();
1969  }
1970 
1971  if (chromaGBlur != 0.0) {
1972  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1973  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1974  } else {
1975  filter->chrH = sws_getIdentityVec();
1976  filter->chrV = sws_getIdentityVec();
1977  }
1978 
1979  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1980  goto fail;
1981 
1982  if (chromaSharpen != 0.0) {
1983  SwsVector *id = sws_getIdentityVec();
1984  if (!id)
1985  goto fail;
1986  sws_scaleVec(filter->chrH, -chromaSharpen);
1987  sws_scaleVec(filter->chrV, -chromaSharpen);
1988  sws_addVec(filter->chrH, id);
1989  sws_addVec(filter->chrV, id);
1990  sws_freeVec(id);
1991  }
1992 
1993  if (lumaSharpen != 0.0) {
1994  SwsVector *id = sws_getIdentityVec();
1995  if (!id)
1996  goto fail;
1997  sws_scaleVec(filter->lumH, -lumaSharpen);
1998  sws_scaleVec(filter->lumV, -lumaSharpen);
1999  sws_addVec(filter->lumH, id);
2000  sws_addVec(filter->lumV, id);
2001  sws_freeVec(id);
2002  }
2003 
2004  if (chromaHShift != 0.0)
2005  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
2006 
2007  if (chromaVShift != 0.0)
2008  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
2009 
2010  sws_normalizeVec(filter->chrH, 1.0);
2011  sws_normalizeVec(filter->chrV, 1.0);
2012  sws_normalizeVec(filter->lumH, 1.0);
2013  sws_normalizeVec(filter->lumV, 1.0);
2014 
2015  if (isnan_vec(filter->chrH) ||
2016  isnan_vec(filter->chrV) ||
2017  isnan_vec(filter->lumH) ||
2018  isnan_vec(filter->lumV))
2019  goto fail;
2020 
2021  if (verbose)
2023  if (verbose)
2025 
2026  return filter;
2027 
2028 fail:
2029  sws_freeVec(filter->lumH);
2030  sws_freeVec(filter->lumV);
2031  sws_freeVec(filter->chrH);
2032  sws_freeVec(filter->chrV);
2033  av_freep(&filter);
2034  return NULL;
2035 }
2036 
2038 {
2039  SwsVector *vec;
2040 
2041  if(length <= 0 || length > INT_MAX/ sizeof(double))
2042  return NULL;
2043 
2044  vec = av_malloc(sizeof(SwsVector));
2045  if (!vec)
2046  return NULL;
2047  vec->length = length;
2048  vec->coeff = av_malloc(sizeof(double) * length);
2049  if (!vec->coeff)
2050  av_freep(&vec);
2051  return vec;
2052 }
2053 
2054 SwsVector *sws_getGaussianVec(double variance, double quality)
2055 {
2056  const int length = (int)(variance * quality + 0.5) | 1;
2057  int i;
2058  double middle = (length - 1) * 0.5;
2059  SwsVector *vec;
2060 
2061  if(variance < 0 || quality < 0)
2062  return NULL;
2063 
2064  vec = sws_allocVec(length);
2065 
2066  if (!vec)
2067  return NULL;
2068 
2069  for (i = 0; i < length; i++) {
2070  double dist = i - middle;
2071  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2072  sqrt(2 * variance * M_PI);
2073  }
2074 
2075  sws_normalizeVec(vec, 1.0);
2076 
2077  return vec;
2078 }
2079 
2080 /**
2081  * Allocate and return a vector with length coefficients, all
2082  * with the same value c.
2083  */
2084 #if !FF_API_SWS_VECTOR
2085 static
2086 #endif
2087 SwsVector *sws_getConstVec(double c, int length)
2088 {
2089  int i;
2090  SwsVector *vec = sws_allocVec(length);
2091 
2092  if (!vec)
2093  return NULL;
2094 
2095  for (i = 0; i < length; i++)
2096  vec->coeff[i] = c;
2097 
2098  return vec;
2099 }
2100 
2101 /**
2102  * Allocate and return a vector with just one coefficient, with
2103  * value 1.0.
2104  */
2105 #if !FF_API_SWS_VECTOR
2106 static
2107 #endif
2109 {
2110  return sws_getConstVec(1.0, 1);
2111 }
2112 
2113 static double sws_dcVec(SwsVector *a)
2114 {
2115  int i;
2116  double sum = 0;
2117 
2118  for (i = 0; i < a->length; i++)
2119  sum += a->coeff[i];
2120 
2121  return sum;
2122 }
2123 
2124 void sws_scaleVec(SwsVector *a, double scalar)
2125 {
2126  int i;
2127 
2128  for (i = 0; i < a->length; i++)
2129  a->coeff[i] *= scalar;
2130 }
2131 
2133 {
2135 }
2136 
2137 #if FF_API_SWS_VECTOR
2139 {
2140  int length = a->length + b->length - 1;
2141  int i, j;
2142  SwsVector *vec = sws_getConstVec(0.0, length);
2143 
2144  if (!vec)
2145  return NULL;
2146 
2147  for (i = 0; i < a->length; i++) {
2148  for (j = 0; j < b->length; j++) {
2149  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2150  }
2151  }
2152 
2153  return vec;
2154 }
2155 #endif
2156 
2158 {
2159  int length = FFMAX(a->length, b->length);
2160  int i;
2161  SwsVector *vec = sws_getConstVec(0.0, length);
2162 
2163  if (!vec)
2164  return NULL;
2165 
2166  for (i = 0; i < a->length; i++)
2167  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2168  for (i = 0; i < b->length; i++)
2169  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2170 
2171  return vec;
2172 }
2173 
2174 #if FF_API_SWS_VECTOR
2176 {
2177  int length = FFMAX(a->length, b->length);
2178  int i;
2179  SwsVector *vec = sws_getConstVec(0.0, length);
2180 
2181  if (!vec)
2182  return NULL;
2183 
2184  for (i = 0; i < a->length; i++)
2185  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2186  for (i = 0; i < b->length; i++)
2187  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2188 
2189  return vec;
2190 }
2191 #endif
2192 
2193 /* shift left / or right if "shift" is negative */
2195 {
2196  int length = a->length + FFABS(shift) * 2;
2197  int i;
2198  SwsVector *vec = sws_getConstVec(0.0, length);
2199 
2200  if (!vec)
2201  return NULL;
2202 
2203  for (i = 0; i < a->length; i++) {
2204  vec->coeff[i + (length - 1) / 2 -
2205  (a->length - 1) / 2 - shift] = a->coeff[i];
2206  }
2207 
2208  return vec;
2209 }
2210 
2211 #if !FF_API_SWS_VECTOR
2212 static
2213 #endif
2215 {
2216  SwsVector *shifted = sws_getShiftedVec(a, shift);
2217  if (!shifted) {
2218  makenan_vec(a);
2219  return;
2220  }
2221  av_free(a->coeff);
2222  a->coeff = shifted->coeff;
2223  a->length = shifted->length;
2224  av_free(shifted);
2225 }
2226 
2227 #if !FF_API_SWS_VECTOR
2228 static
2229 #endif
2231 {
2232  SwsVector *sum = sws_sumVec(a, b);
2233  if (!sum) {
2234  makenan_vec(a);
2235  return;
2236  }
2237  av_free(a->coeff);
2238  a->coeff = sum->coeff;
2239  a->length = sum->length;
2240  av_free(sum);
2241 }
2242 
2243 #if FF_API_SWS_VECTOR
2245 {
2246  SwsVector *diff = sws_diffVec(a, b);
2247  if (!diff) {
2248  makenan_vec(a);
2249  return;
2250  }
2251  av_free(a->coeff);
2252  a->coeff = diff->coeff;
2253  a->length = diff->length;
2254  av_free(diff);
2255 }
2256 
2258 {
2260  if (!conv) {
2261  makenan_vec(a);
2262  return;
2263  }
2264  av_free(a->coeff);
2265  a->coeff = conv->coeff;
2266  a->length = conv->length;
2267  av_free(conv);
2268 }
2269 
2271 {
2272  SwsVector *vec = sws_allocVec(a->length);
2273 
2274  if (!vec)
2275  return NULL;
2276 
2277  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2278 
2279  return vec;
2280 }
2281 #endif
2282 
2283 /**
2284  * Print with av_log() a textual representation of the vector a
2285  * if log_level <= av_log_level.
2286  */
2287 #if !FF_API_SWS_VECTOR
2288 static
2289 #endif
2290 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2291 {
2292  int i;
2293  double max = 0;
2294  double min = 0;
2295  double range;
2296 
2297  for (i = 0; i < a->length; i++)
2298  if (a->coeff[i] > max)
2299  max = a->coeff[i];
2300 
2301  for (i = 0; i < a->length; i++)
2302  if (a->coeff[i] < min)
2303  min = a->coeff[i];
2304 
2305  range = max - min;
2306 
2307  for (i = 0; i < a->length; i++) {
2308  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2309  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2310  for (; x > 0; x--)
2311  av_log(log_ctx, log_level, " ");
2312  av_log(log_ctx, log_level, "|\n");
2313  }
2314 }
2315 
2317 {
2318  if (!a)
2319  return;
2320  av_freep(&a->coeff);
2321  a->length = 0;
2322  av_free(a);
2323 }
2324 
2326 {
2327  if (!filter)
2328  return;
2329 
2330  sws_freeVec(filter->lumH);
2331  sws_freeVec(filter->lumV);
2332  sws_freeVec(filter->chrH);
2333  sws_freeVec(filter->chrV);
2334  av_free(filter);
2335 }
2336 
2338 {
2339  int i;
2340  if (!c)
2341  return;
2342 
2343  for (i = 0; i < 4; i++)
2344  av_freep(&c->dither_error[i]);
2345 
2346  av_freep(&c->vLumFilter);
2347  av_freep(&c->vChrFilter);
2348  av_freep(&c->hLumFilter);
2349  av_freep(&c->hChrFilter);
2350 #if HAVE_ALTIVEC
2351  av_freep(&c->vYCoeffsBank);
2352  av_freep(&c->vCCoeffsBank);
2353 #endif
2354 
2355  av_freep(&c->vLumFilterPos);
2356  av_freep(&c->vChrFilterPos);
2357  av_freep(&c->hLumFilterPos);
2358  av_freep(&c->hChrFilterPos);
2359 
2360 #if HAVE_MMX_INLINE
2361 #if USE_MMAP
2362  if (c->lumMmxextFilterCode)
2363  munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
2364  if (c->chrMmxextFilterCode)
2365  munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
2366 #elif HAVE_VIRTUALALLOC
2367  if (c->lumMmxextFilterCode)
2368  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2369  if (c->chrMmxextFilterCode)
2370  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2371 #else
2372  av_free(c->lumMmxextFilterCode);
2373  av_free(c->chrMmxextFilterCode);
2374 #endif
2375  c->lumMmxextFilterCode = NULL;
2376  c->chrMmxextFilterCode = NULL;
2377 #endif /* HAVE_MMX_INLINE */
2378 
2379  av_freep(&c->yuvTable);
2380  av_freep(&c->formatConvBuffer);
2381 
2382  sws_freeContext(c->cascaded_context[0]);
2383  sws_freeContext(c->cascaded_context[1]);
2384  sws_freeContext(c->cascaded_context[2]);
2385  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2386  av_freep(&c->cascaded_tmp[0]);
2387  av_freep(&c->cascaded1_tmp[0]);
2388 
2389  av_freep(&c->gamma);
2390  av_freep(&c->inv_gamma);
2391 
2392  ff_free_filters(c);
2393 
2394  av_free(c);
2395 }
2396 
2397 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2398  int srcH, enum AVPixelFormat srcFormat,
2399  int dstW, int dstH,
2400  enum AVPixelFormat dstFormat, int flags,
2401  SwsFilter *srcFilter,
2402  SwsFilter *dstFilter,
2403  const double *param)
2404 {
2405  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2407  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2408  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2409 
2410  if (!param)
2411  param = default_param;
2412 
2413  if (context &&
2414  (context->srcW != srcW ||
2415  context->srcH != srcH ||
2416  context->srcFormat != srcFormat ||
2417  context->dstW != dstW ||
2418  context->dstH != dstH ||
2419  context->dstFormat != dstFormat ||
2420  context->flags != flags ||
2421  context->param[0] != param[0] ||
2422  context->param[1] != param[1])) {
2423 
2424  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2425  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2426  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2427  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2428  sws_freeContext(context);
2429  context = NULL;
2430  }
2431 
2432  if (!context) {
2433  if (!(context = sws_alloc_context()))
2434  return NULL;
2435  context->srcW = srcW;
2436  context->srcH = srcH;
2437  context->srcFormat = srcFormat;
2438  context->dstW = dstW;
2439  context->dstH = dstH;
2440  context->dstFormat = dstFormat;
2441  context->flags = flags;
2442  context->param[0] = param[0];
2443  context->param[1] = param[1];
2444 
2445  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2446  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2447  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2448  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2449 
2450  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2451  sws_freeContext(context);
2452  return NULL;
2453  }
2454  }
2455  return context;
2456 }
#define have_neon(flags)
Definition: cpu.h:26
static const char *const format[]
Definition: af_aiir.c:456
#define MAX_FILTER_SIZE
Definition: af_dynaudnorm.c:33
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
#define A(x)
Definition: vp56_arith.h:28
Macro definitions for various function/variable attributes.
#define av_cold
Definition: attributes.h:88
uint8_t
int32_t
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
#define V
Definition: avdct.c:30
Convenience header that includes libavutil's core.
byte swapping routines
#define flag(name)
Definition: cbs_av1.c:553
#define flags(name, subs,...)
Definition: cbs_av1.c:561
#define ub(width, name)
Definition: cbs_h2645.c:266
#define s(width, name)
Definition: cbs_vp9.c:257
static av_always_inline void filter(int16_t *output, ptrdiff_t out_stride, const int16_t *low, ptrdiff_t low_stride, const int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhddsp.c:27
int verbose
Definition: checkasm.c:285
#define fail()
Definition: checkasm.h:133
#define FFMIN(a, b)
Definition: common.h:105
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
#define ROUNDED_DIV(a, b)
Definition: common.h:56
#define FFMAX(a, b)
Definition: common.h:103
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define FFMPEG_CONFIGURATION
Definition: config.h:4
#define ARCH_PPC
Definition: config.h:30
#define CONFIG_SWSCALE_ALPHA
Definition: config.h:564
#define FFMPEG_LICENSE
Definition: config.h:5
#define HAVE_MMX
Definition: config.h:64
#define NULL
Definition: coverity.c:32
static atomic_int cpu_flags
Definition: cpu.c:50
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:95
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:31
static __device__ float ceil(float a)
Definition: cuda_runtime.h:176
#define max(a, b)
Definition: cuda_runtime.h:33
static enum AVPixelFormat pix_fmt
int8_t exp
Definition: eval.c:72
int
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1358
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:210
#define AV_LOG_INFO
Standard information.
Definition: log.h:205
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:216
#define SWS_BITEXACT
Definition: swscale.h:84
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2244
#define SWS_BICUBIC
Definition: swscale.h:60
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:1007
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2325
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2230
#define SWS_CS_DEFAULT
Definition: swscale.h:95
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1179
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality,...
Definition: utils.c:2054
#define SWS_BILINEAR
Definition: swscale.h:59
#define SWS_ACCURATE_RND
Definition: swscale.h:83
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2214
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:70
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:79
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:81
#define SWS_PRINT_INFO
Definition: swscale.h:75
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c.
Definition: utils.c:2087
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:872
void sws_freeVec(SwsVector *a)
Definition: utils.c:2316
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2270
#define SWS_X
Definition: swscale.h:61
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:289
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:283
#define SWS_GAUSS
Definition: swscale.h:65
#define SWS_AREA
Definition: swscale.h:63
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:71
#define SWS_SINC
Definition: swscale.h:66
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:2037
#define SWS_BICUBLIN
Definition: swscale.h:64
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2290
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:85
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2257
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2108
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86
#define SWS_POINT
Definition: swscale.h:62
#define SWS_LANCZOS
Definition: swscale.h:67
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2132
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:277
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1954
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1093
unsigned swscale_version(void)
Definition: utils.c:75
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:87
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2337
#define SWS_PARAM_DEFAULT
Definition: swscale.h:73
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2397
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1917
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2124
#define SWS_SPLINE
Definition: swscale.h:68
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:912
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:586
for(j=16;j >0;--j)
#define B
Definition: huffyuvdsp.h:32
const VDPAUPixFmtMap * map
misc image utilities
int i
Definition: input.c:407
#define av_log2
Definition: intmath.h:83
#define AV_WL16(p, v)
Definition: intreadwrite.h:412
#define C
#define FF_ALLOC_TYPED_ARRAY(p, nelem)
Definition: internal.h:102
#define emms_c()
Definition: internal.h:54
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
Definition: internal.h:103
Replacements for frequently missing libm functions.
#define isnan(x)
Definition: libm.h:340
#define exp2(x)
Definition: libm.h:288
const AVClass ff_sws_context_class
Definition: options.c:87
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1063
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1074
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:831
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1121
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1892
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:337
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:1025
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:323
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:295
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:737
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2138
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2157
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:308
static void makenan_vec(SwsVector *a)
Definition: utils.c:1947
static void handle_formats(SwsContext *c)
Definition: utils.c:1083
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2113
static int isnan_vec(SwsVector *a)
Definition: utils.c:1938
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1107
static const FormatEntry format_entries[]
Definition: utils.c:98
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2194
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2175
#define LICENSE_PREFIX
static int range_override_needed(enum AVPixelFormat format)
Definition: utils.c:867
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:131
#define FFALIGN(x, a)
Definition: macros.h:48
#define NAN
Definition: mathematics.h:64
#define M_PI
Definition: mathematics.h:52
static const uint64_t c2
Definition: murmur3.c:52
AVOptions.
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2601
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2525
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2489
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2669
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2573
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:410
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:398
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:399
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:397
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:392
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:390
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:415
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:400
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:416
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:396
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:385
#define AV_PIX_FMT_GRAYF32
Definition: pixfmt.h:431
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_BAYER_GBRG8
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples
Definition: pixfmt.h:262
@ AV_PIX_FMT_YUV444P16BE
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:136
@ AV_PIX_FMT_GRAY16BE
Y , 16bpp, big-endian.
Definition: pixfmt.h:97
@ AV_PIX_FMT_XYZ12LE
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:199
@ AV_PIX_FMT_NV12
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:89
@ AV_PIX_FMT_YUV420P16BE
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:132
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_P010LE
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits,...
Definition: pixfmt.h:284
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
@ AV_PIX_FMT_GRAY10LE
Y , 10bpp, little-endian.
Definition: pixfmt.h:298
@ AV_PIX_FMT_GRAYF32LE
IEEE-754 single precision Y, 32bpp, little-endian.
Definition: pixfmt.h:341
@ AV_PIX_FMT_GBRP10BE
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:172
@ AV_PIX_FMT_YA16BE
16 bits gray, 16 bits alpha (big-endian)
Definition: pixfmt.h:212
@ AV_PIX_FMT_YUVA420P9BE
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:178
@ AV_PIX_FMT_YUVA444P12BE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, big-endian
Definition: pixfmt.h:345
@ AV_PIX_FMT_NV42
as above, but U and V bytes are swapped
Definition: pixfmt.h:349
@ AV_PIX_FMT_YUV420P14LE
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:245
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:99
@ AV_PIX_FMT_YUV440P10BE
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:276
@ AV_PIX_FMT_NV21
as above, but U and V bytes are swapped
Definition: pixfmt.h:90
@ AV_PIX_FMT_GBRPF32BE
IEEE-754 single precision planar GBR 4:4:4, 96bpp, big-endian.
Definition: pixfmt.h:318
@ AV_PIX_FMT_MONOBLACK
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb.
Definition: pixfmt.h:76
@ AV_PIX_FMT_BGR565BE
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:110
@ AV_PIX_FMT_YUVA422P12BE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, big-endian
Definition: pixfmt.h:343
@ AV_PIX_FMT_YUVA444P9LE
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:183
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
@ AV_PIX_FMT_YUVA444P10LE
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:189
@ AV_PIX_FMT_GBRP9LE
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:171
@ AV_PIX_FMT_YUV444P14BE
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:252
@ AV_PIX_FMT_YUVA420P10BE
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:184
@ AV_PIX_FMT_YUVA422P12LE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, little-endian
Definition: pixfmt.h:344
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
@ AV_PIX_FMT_BAYER_GRBG16LE
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:270
@ AV_PIX_FMT_P016LE
like NV12, with 16bpp per component, little-endian
Definition: pixfmt.h:300
@ AV_PIX_FMT_P010BE
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits,...
Definition: pixfmt.h:285
@ AV_PIX_FMT_AYUV64LE
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:279
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
@ AV_PIX_FMT_RGB555BE
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:107
@ AV_PIX_FMT_YVYU422
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:210
@ AV_PIX_FMT_GBRP12BE
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:254
@ AV_PIX_FMT_YUVA422P9LE
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:181
@ AV_PIX_FMT_GRAY12LE
Y , 12bpp, little-endian.
Definition: pixfmt.h:296
@ AV_PIX_FMT_GBRAP12BE
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:287
@ AV_PIX_FMT_YUV420P9LE
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:157
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
@ AV_PIX_FMT_GRAY12BE
Y , 12bpp, big-endian.
Definition: pixfmt.h:295
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:74
@ AV_PIX_FMT_BGR48BE
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:148
@ AV_PIX_FMT_YA16LE
16 bits gray, 16 bits alpha (little-endian)
Definition: pixfmt.h:213
@ AV_PIX_FMT_YUVA420P10LE
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:185
@ AV_PIX_FMT_GRAY14LE
Y , 14bpp, little-endian.
Definition: pixfmt.h:338
@ AV_PIX_FMT_UYVY422
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:81
@ AV_PIX_FMT_Y210LE
packed YUV 4:2:2 like YUYV422, 20bpp, data in the high bits, little-endian
Definition: pixfmt.h:359
@ AV_PIX_FMT_RGB48BE
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:102
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
@ AV_PIX_FMT_YUV422P10BE
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:160
@ AV_PIX_FMT_P016BE
like NV12, with 16bpp per component, big-endian
Definition: pixfmt.h:301
@ AV_PIX_FMT_YUVA422P10LE
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:187
@ AV_PIX_FMT_YUV420P10LE
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:159
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
Definition: pixfmt.h:100
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
@ AV_PIX_FMT_RGBA64BE
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:205
@ AV_PIX_FMT_RGB8
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:86
@ AV_PIX_FMT_NV24
planar YUV 4:4:4, 24bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:348
@ AV_PIX_FMT_RGBA64LE
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:206
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:73
@ AV_PIX_FMT_YUV422P16LE
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:133
@ AV_PIX_FMT_YUV420P14BE
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:244
@ AV_PIX_FMT_GBRAP16BE
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:216
@ AV_PIX_FMT_YUV444P14LE
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:253
@ AV_PIX_FMT_BAYER_RGGB16LE
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:266
@ AV_PIX_FMT_GBRPF32LE
IEEE-754 single precision planar GBR 4:4:4, 96bpp, little-endian.
Definition: pixfmt.h:319
@ AV_PIX_FMT_YUVA444P9BE
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:182
@ AV_PIX_FMT_YUV422P12LE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:247
@ AV_PIX_FMT_BGR8
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:83
@ AV_PIX_FMT_RGB444LE
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined
Definition: pixfmt.h:139
@ AV_PIX_FMT_YUV444P10BE
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:164
@ AV_PIX_FMT_YUV440P12LE
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:277
@ AV_PIX_FMT_RGB4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:88
@ AV_PIX_FMT_BGR4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:85
@ AV_PIX_FMT_YUVA420P9LE
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian
Definition: pixfmt.h:179
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
@ AV_PIX_FMT_XYZ12BE
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:200
@ AV_PIX_FMT_YUV444P9LE
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:163
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
@ AV_PIX_FMT_BAYER_GRBG8
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples
Definition: pixfmt.h:263
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:258
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
@ AV_PIX_FMT_GBRP12LE
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:255
@ AV_PIX_FMT_GRAY9BE
Y , 9bpp, big-endian.
Definition: pixfmt.h:315
@ AV_PIX_FMT_YUVA444P16LE
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:195
@ AV_PIX_FMT_YUVA422P10BE
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:186
@ AV_PIX_FMT_UYYVYY411
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:82
@ AV_PIX_FMT_YUVA422P16BE
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:192
@ AV_PIX_FMT_BGRA64BE
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:207
@ AV_PIX_FMT_RGB565LE
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:106
@ AV_PIX_FMT_BAYER_BGGR16BE
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:265
@ AV_PIX_FMT_GBRP16BE
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:174
@ AV_PIX_FMT_GBRAP12LE
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:288
@ AV_PIX_FMT_GBRP9BE
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:170
@ AV_PIX_FMT_YUVA420P16LE
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:191
@ AV_PIX_FMT_RGB555LE
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined
Definition: pixfmt.h:108
@ AV_PIX_FMT_BGR444BE
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:142
@ AV_PIX_FMT_RGB48LE
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:103
@ AV_PIX_FMT_BGR555BE
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:112
@ AV_PIX_FMT_GBRAPF32BE
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, big-endian.
Definition: pixfmt.h:320
@ AV_PIX_FMT_BGR444LE
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined
Definition: pixfmt.h:141
@ AV_PIX_FMT_YUVA420P16BE
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:190
@ AV_PIX_FMT_YUV420P12LE
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:243
@ AV_PIX_FMT_BAYER_RGGB16BE
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:267
@ AV_PIX_FMT_X2RGB10LE
packed RGB 10:10:10, 30bpp, (msb)2X 10R 10G 10B(lsb), little-endian, X=unused/undefined
Definition: pixfmt.h:361
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
@ AV_PIX_FMT_YUV444P9BE
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:162
@ AV_PIX_FMT_GBRAPF32LE
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, little-endian.
Definition: pixfmt.h:321
@ AV_PIX_FMT_YUV422P9LE
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:167
@ AV_PIX_FMT_GRAYF32BE
IEEE-754 single precision Y, 32bpp, big-endian.
Definition: pixfmt.h:340
@ AV_PIX_FMT_RGB444BE
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:140
@ AV_PIX_FMT_YUV422P9BE
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:166
@ AV_PIX_FMT_BGR48LE
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:149
@ AV_PIX_FMT_GBRP14LE
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:257
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
@ AV_PIX_FMT_YUV422P10LE
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:161
@ AV_PIX_FMT_GRAY16LE
Y , 16bpp, little-endian.
Definition: pixfmt.h:98
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:176
@ AV_PIX_FMT_GBRP10LE
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:173
@ AV_PIX_FMT_GBRAP10BE
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:290
@ AV_PIX_FMT_BAYER_GRBG16BE
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:271
@ AV_PIX_FMT_RGB565BE
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:105
@ AV_PIX_FMT_BGR555LE
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined
Definition: pixfmt.h:113
@ AV_PIX_FMT_YUV420P12BE
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:242
@ AV_PIX_FMT_BGRA64LE
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:208
@ AV_PIX_FMT_YUV440P12BE
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:278
@ AV_PIX_FMT_GBRAP10LE
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:291
@ AV_PIX_FMT_YUYV422
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:67
@ AV_PIX_FMT_YUV422P16BE
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:134
@ AV_PIX_FMT_BAYER_GBRG16LE
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:268
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:77
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
@ AV_PIX_FMT_GRAY9LE
Y , 9bpp, little-endian.
Definition: pixfmt.h:316
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
@ AV_PIX_FMT_YUV422P14LE
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:249
@ AV_PIX_FMT_GBRAP16LE
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:217
@ AV_PIX_FMT_BAYER_BGGR16LE
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:264
@ AV_PIX_FMT_YUV420P10BE
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:158
@ AV_PIX_FMT_YUV420P9BE
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:156
@ AV_PIX_FMT_GRAY10BE
Y , 10bpp, big-endian.
Definition: pixfmt.h:297
@ AV_PIX_FMT_YUVA444P10BE
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:188
@ AV_PIX_FMT_YUV440P10LE
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:275
@ AV_PIX_FMT_YA8
8 bits gray, 8 bits alpha
Definition: pixfmt.h:143
@ AV_PIX_FMT_YUV444P16LE
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:135
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
@ AV_PIX_FMT_GRAY14BE
Y , 14bpp, big-endian.
Definition: pixfmt.h:337
@ AV_PIX_FMT_GBRP14BE
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:256
@ AV_PIX_FMT_BGR565LE
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:111
@ AV_PIX_FMT_YUV422P14BE
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:248
@ AV_PIX_FMT_BAYER_GBRG16BE
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:269
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
@ AV_PIX_FMT_YUV444P12BE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:250
@ AV_PIX_FMT_YUVA444P16BE
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:194
@ AV_PIX_FMT_YUVA422P16LE
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:193
@ AV_PIX_FMT_BAYER_RGGB8
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples
Definition: pixfmt.h:261
@ AV_PIX_FMT_GBRP16LE
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:175
@ AV_PIX_FMT_YUVA422P9BE
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:180
@ AV_PIX_FMT_RGB4
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:87
@ AV_PIX_FMT_YUVA444P12LE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, little-endian
Definition: pixfmt.h:346
@ AV_PIX_FMT_MONOWHITE
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb.
Definition: pixfmt.h:75
@ AV_PIX_FMT_BGR4
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:84
@ AV_PIX_FMT_YUV444P10LE
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:165
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
@ AV_PIX_FMT_YUV422P12BE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:246
@ AV_PIX_FMT_BAYER_BGGR8
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples
Definition: pixfmt.h:260
@ AV_PIX_FMT_YUV420P16LE
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:131
@ AV_PIX_FMT_YUV444P12LE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:251
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:391
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:411
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:394
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:383
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:418
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:412
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:402
#define PPC_ALTIVEC(flags)
Definition: cpu.h:25
static const uint16_t table[]
Definition: prosumer.c:206
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:137
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
#define FF_ARRAY_ELEMS(a)
int ff_free_filters(SwsContext *c)
Definition: slice.c:379
int ff_init_filters(SwsContext *c)
Definition: slice.c:248
static int shift(int a, int b)
Definition: sonic.c:82
unsigned int pos
Definition: spdifenc.c:412
Describe the class of an AVClass context structure.
Definition: log.h:67
int depth
Number of bits in the component.
Definition: pixdesc.h:58
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t is_supported_in
Definition: utils.c:93
uint8_t is_supported_endianness
Definition: utils.c:95
uint8_t is_supported_out
Definition: utils.c:94
int flag
flag associated to the algorithm
Definition: utils.c:318
int size_factor
size factor used when initing the filters
Definition: utils.c:320
const char * description
human-readable description
Definition: utils.c:319
int dstW
Width of destination luma/alpha planes.
int dstH
Height of destination luma/alpha planes.
int srcW
Width of source luma/alpha planes.
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc....
double param[2]
Input parameters for scaling algorithms that need them.
enum AVPixelFormat dstFormat
Destination pixel format.
int srcH
Height of source luma/alpha planes.
enum AVPixelFormat srcFormat
Source pixel format.
SwsVector * chrV
Definition: swscale.h:119
SwsVector * lumH
Definition: swscale.h:116
SwsVector * lumV
Definition: swscale.h:117
SwsVector * chrH
Definition: swscale.h:118
double * coeff
pointer to the list of coefficients
Definition: swscale.h:110
int length
number of coefficients in the vector
Definition: swscale.h:111
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:527
#define RGB2YUV_SHIFT
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:584
external API header
#define APCK_SIZE
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
#define BU_IDX
#define RV_IDX
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
#define DITHER1XBPP
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
#define DITHER32_INT
#define RY_IDX
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
#define BV_IDX
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
#define GV_IDX
#define RETCODE_USE_CASCADE
@ SWS_DITHER_ED
@ SWS_DITHER_A_DITHER
@ SWS_DITHER_X_DITHER
@ SWS_DITHER_AUTO
@ SWS_DITHER_BAYER
#define XYZ_GAMMA
#define GU_IDX
@ SWS_ALPHA_BLEND_NONE
#define BY_IDX
#define RGB_GAMMA
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:774
#define GY_IDX
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define RU_IDX
static av_always_inline int isBayer16BPS(enum AVPixelFormat pix_fmt)
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
#define lrint
Definition: tablegen.h:53
#define av_free(p)
#define av_malloc_array(a, b)
#define av_freep(p)
#define av_malloc(s)
#define av_log(a,...)
static void error(const char *err)
#define isALPHA(x)
Definition: swscale.c:51
#define isGray(x)
Definition: swscale.c:40
static int height
Definition: utils.c:158
@ ONE
Definition: vc1_parser.c:48
@ W
Definition: vf_addroi.c:26
const char * b
Definition: vf_curves.c:118
static const double coeff[2][5]
Definition: vf_owdenoise.c:73
static av_always_inline int diff(const uint32_t a, const uint32_t b)
float min
static double c[64]
#define X86_MMX(flags)
Definition: cpu.h:30
#define INLINE_MMXEXT(flags)
Definition: cpu.h:87
#define INLINE_MMX(flags)
Definition: cpu.h:86
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:84
int acc
Definition: yuv2rgb.c:555
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)