FFmpeg  4.4
indeo3.c
Go to the documentation of this file.
1 /*
2  * Indeo Video v3 compatible decoder
3  * Copyright (c) 2009 - 2011 Maxim Poliakovski
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * This is a decoder for Intel Indeo Video v3.
25  * It is based on vector quantization, run-length coding and motion compensation.
26  * Known container formats: .avi and .mov
27  * Known FOURCCs: 'IV31', 'IV32'
28  *
29  * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
30  */
31 
32 #include "libavutil/imgutils.h"
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
35 #include "copy_block.h"
36 #include "bytestream.h"
37 #include "get_bits.h"
38 #include "hpeldsp.h"
39 #include "internal.h"
40 
41 #include "indeo3data.h"
42 
43 /* RLE opcodes. */
44 enum {
45  RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
46  RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
47  RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
48  RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
49  RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
50  RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
51  RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
52 };
53 
54 
55 /* Some constants for parsing frame bitstream flags. */
56 #define BS_8BIT_PEL (1 << 1) ///< 8-bit pixel bitdepth indicator
57 #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
58 #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
59 #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
60 #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
61 #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
62 
63 
64 typedef struct Plane {
66  uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
67  uint32_t width;
68  uint32_t height;
69  ptrdiff_t pitch;
70 } Plane;
71 
72 #define CELL_STACK_MAX 20
73 
74 typedef struct Cell {
75  int16_t xpos; ///< cell coordinates in 4x4 blocks
76  int16_t ypos;
77  int16_t width; ///< cell width in 4x4 blocks
78  int16_t height; ///< cell height in 4x4 blocks
79  uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
80  const int8_t *mv_ptr; ///< ptr to the motion vector if any
81 } Cell;
82 
83 typedef struct Indeo3DecodeContext {
86 
89  int skip_bits;
92  const int8_t *mc_vectors;
93  unsigned num_vectors; ///< number of motion vectors in mc_vectors
94 
95  int16_t width, height;
96  uint32_t frame_num; ///< current frame number (zero-based)
97  int data_size; ///< size of the frame data in bytes
98  uint16_t frame_flags; ///< frame properties
99  uint8_t cb_offset; ///< needed for selecting VQ tables
100  uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
107  const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
110 
111 
112 static uint8_t requant_tab[8][128];
113 
114 /*
115  * Build the static requantization table.
116  * This table is used to remap pixel values according to a specific
117  * quant index and thus avoid overflows while adding deltas.
118  */
119 static av_cold void build_requant_tab(void)
120 {
121  static const int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
122  static const int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
123 
124  int i, j, step;
125 
126  for (i = 0; i < 8; i++) {
127  step = i + 2;
128  for (j = 0; j < 128; j++)
129  requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
130  }
131 
132  /* some last elements calculated above will have values >= 128 */
133  /* pixel values shall never exceed 127 so set them to non-overflowing values */
134  /* according with the quantization step of the respective section */
135  requant_tab[0][127] = 126;
136  requant_tab[1][119] = 118;
137  requant_tab[1][120] = 118;
138  requant_tab[2][126] = 124;
139  requant_tab[2][127] = 124;
140  requant_tab[6][124] = 120;
141  requant_tab[6][125] = 120;
142  requant_tab[6][126] = 120;
143  requant_tab[6][127] = 120;
144 
145  /* Patch for compatibility with the Intel's binary decoders */
146  requant_tab[1][7] = 10;
147  requant_tab[4][8] = 10;
148 }
149 
150 
152 {
153  int p;
154 
155  ctx->width = ctx->height = 0;
156 
157  for (p = 0; p < 3; p++) {
158  av_freep(&ctx->planes[p].buffers[0]);
159  av_freep(&ctx->planes[p].buffers[1]);
160  ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
161  }
162 }
163 
164 
166  AVCodecContext *avctx, int luma_width, int luma_height)
167 {
168  int p, chroma_width, chroma_height;
169  int luma_size, chroma_size;
170  ptrdiff_t luma_pitch, chroma_pitch;
171 
172  if (luma_width < 16 || luma_width > 640 ||
173  luma_height < 16 || luma_height > 480 ||
174  luma_width & 1 || luma_height & 1) {
175  av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
176  luma_width, luma_height);
177  return AVERROR_INVALIDDATA;
178  }
179 
180  ctx->width = luma_width ;
181  ctx->height = luma_height;
182 
183  chroma_width = FFALIGN(luma_width >> 2, 4);
184  chroma_height = FFALIGN(luma_height >> 2, 4);
185 
186  luma_pitch = FFALIGN(luma_width, 16);
187  chroma_pitch = FFALIGN(chroma_width, 16);
188 
189  /* Calculate size of the luminance plane. */
190  /* Add one line more for INTRA prediction. */
191  luma_size = luma_pitch * (luma_height + 1);
192 
193  /* Calculate size of a chrominance planes. */
194  /* Add one line more for INTRA prediction. */
195  chroma_size = chroma_pitch * (chroma_height + 1);
196 
197  /* allocate frame buffers */
198  for (p = 0; p < 3; p++) {
199  ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
200  ctx->planes[p].width = !p ? luma_width : chroma_width;
201  ctx->planes[p].height = !p ? luma_height : chroma_height;
202 
203  ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
204  ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
205 
206  if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1])
207  return AVERROR(ENOMEM);
208 
209  /* fill the INTRA prediction lines with the middle pixel value = 64 */
210  memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
211  memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
212 
213  /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
214  ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
215  ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
216  memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
217  memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
218  }
219 
220  return 0;
221 }
222 
223 /**
224  * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
225  * the cell(x, y) in the current frame.
226  *
227  * @param ctx pointer to the decoder context
228  * @param plane pointer to the plane descriptor
229  * @param cell pointer to the cell descriptor
230  */
232 {
233  int h, w, mv_x, mv_y, offset, offset_dst;
234  uint8_t *src, *dst;
235 
236  /* setup output and reference pointers */
237  offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
238  dst = plane->pixels[ctx->buf_sel] + offset_dst;
239  if(cell->mv_ptr){
240  mv_y = cell->mv_ptr[0];
241  mv_x = cell->mv_ptr[1];
242  }else
243  mv_x= mv_y= 0;
244 
245  /* -1 because there is an extra line on top for prediction */
246  if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
247  ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
248  ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
249  av_log(ctx->avctx, AV_LOG_ERROR,
250  "Motion vectors point out of the frame.\n");
251  return AVERROR_INVALIDDATA;
252  }
253 
254  offset = offset_dst + mv_y * plane->pitch + mv_x;
255  src = plane->pixels[ctx->buf_sel ^ 1] + offset;
256 
257  h = cell->height << 2;
258 
259  for (w = cell->width; w > 0;) {
260  /* copy using 16xH blocks */
261  if (!((cell->xpos << 2) & 15) && w >= 4) {
262  for (; w >= 4; src += 16, dst += 16, w -= 4)
263  ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
264  }
265 
266  /* copy using 8xH blocks */
267  if (!((cell->xpos << 2) & 7) && w >= 2) {
268  ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
269  w -= 2;
270  src += 8;
271  dst += 8;
272  } else if (w >= 1) {
273  ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
274  w--;
275  src += 4;
276  dst += 4;
277  }
278  }
279 
280  return 0;
281 }
282 
283 
284 /* Average 4/8 pixels at once without rounding using SWAR */
285 #define AVG_32(dst, src, ref) \
286  AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
287 
288 #define AVG_64(dst, src, ref) \
289  AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
290 
291 
292 /*
293  * Replicate each even pixel as follows:
294  * ABCDEFGH -> AACCEEGG
295  */
296 static inline uint64_t replicate64(uint64_t a) {
297 #if HAVE_BIGENDIAN
298  a &= 0xFF00FF00FF00FF00ULL;
299  a |= a >> 8;
300 #else
301  a &= 0x00FF00FF00FF00FFULL;
302  a |= a << 8;
303 #endif
304  return a;
305 }
306 
307 static inline uint32_t replicate32(uint32_t a) {
308 #if HAVE_BIGENDIAN
309  a &= 0xFF00FF00UL;
310  a |= a >> 8;
311 #else
312  a &= 0x00FF00FFUL;
313  a |= a << 8;
314 #endif
315  return a;
316 }
317 
318 
319 /* Fill n lines with 64-bit pixel value pix */
320 static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
321  int32_t row_offset)
322 {
323  for (; n > 0; dst += row_offset, n--)
324  AV_WN64A(dst, pix);
325 }
326 
327 
328 /* Error codes for cell decoding. */
329 enum {
335  IV3_OUT_OF_DATA = 5
336 };
337 
338 
339 #define BUFFER_PRECHECK \
340 if (*data_ptr >= last_ptr) \
341  return IV3_OUT_OF_DATA; \
342 
343 #define RLE_BLOCK_COPY \
344  if (cell->mv_ptr || !skip_flag) \
345  copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
346 
347 #define RLE_BLOCK_COPY_8 \
348  pix64 = AV_RN64(ref);\
349  if (is_first_row) {/* special prediction case: top line of a cell */\
350  pix64 = replicate64(pix64);\
351  fill_64(dst + row_offset, pix64, 7, row_offset);\
352  AVG_64(dst, ref, dst + row_offset);\
353  } else \
354  fill_64(dst, pix64, 8, row_offset)
355 
356 #define RLE_LINES_COPY \
357  copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
358 
359 #define RLE_LINES_COPY_M10 \
360  pix64 = AV_RN64(ref);\
361  if (is_top_of_cell) {\
362  pix64 = replicate64(pix64);\
363  fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
364  AVG_64(dst, ref, dst + row_offset);\
365  } else \
366  fill_64(dst, pix64, num_lines << 1, row_offset)
367 
368 #define APPLY_DELTA_4 \
369  AV_WN16A(dst + line_offset ,\
370  (AV_RN16(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
371  AV_WN16A(dst + line_offset + 2,\
372  (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
373  if (mode >= 3) {\
374  if (is_top_of_cell && !cell->ypos) {\
375  AV_COPY32U(dst, dst + row_offset);\
376  } else {\
377  AVG_32(dst, ref, dst + row_offset);\
378  }\
379  }
380 
381 #define APPLY_DELTA_8 \
382  /* apply two 32-bit VQ deltas to next even line */\
383  if (is_top_of_cell) { \
384  AV_WN32A(dst + row_offset , \
385  (replicate32(AV_RN32(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
386  AV_WN32A(dst + row_offset + 4, \
387  (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
388  } else { \
389  AV_WN32A(dst + row_offset , \
390  (AV_RN32(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
391  AV_WN32A(dst + row_offset + 4, \
392  (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
393  } \
394  /* odd lines are not coded but rather interpolated/replicated */\
395  /* first line of the cell on the top of image? - replicate */\
396  /* otherwise - interpolate */\
397  if (is_top_of_cell && !cell->ypos) {\
398  AV_COPY64U(dst, dst + row_offset);\
399  } else \
400  AVG_64(dst, ref, dst + row_offset);
401 
402 
403 #define APPLY_DELTA_1011_INTER \
404  if (mode == 10) { \
405  AV_WN32A(dst , \
406  (AV_RN32(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
407  AV_WN32A(dst + 4 , \
408  (AV_RN32(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
409  AV_WN32A(dst + row_offset , \
410  (AV_RN32(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
411  AV_WN32A(dst + row_offset + 4, \
412  (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
413  } else { \
414  AV_WN16A(dst , \
415  (AV_RN16(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
416  AV_WN16A(dst + 2 , \
417  (AV_RN16(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
418  AV_WN16A(dst + row_offset , \
419  (AV_RN16(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
420  AV_WN16A(dst + row_offset + 2, \
421  (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
422  }
423 
424 
426  uint8_t *block, uint8_t *ref_block,
427  ptrdiff_t row_offset, int h_zoom, int v_zoom, int mode,
428  const vqEntry *delta[2], int swap_quads[2],
429  const uint8_t **data_ptr, const uint8_t *last_ptr)
430 {
431  int x, y, line, num_lines;
432  int rle_blocks = 0;
433  uint8_t code, *dst, *ref;
434  const vqEntry *delta_tab;
435  unsigned int dyad1, dyad2;
436  uint64_t pix64;
437  int skip_flag = 0, is_top_of_cell, is_first_row = 1;
438  int blk_row_offset, line_offset;
439 
440  blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
441  line_offset = v_zoom ? row_offset : 0;
442 
443  if (cell->height & v_zoom || cell->width & h_zoom)
444  return IV3_BAD_DATA;
445 
446  for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
447  for (x = 0; x < cell->width; x += 1 + h_zoom) {
448  ref = ref_block;
449  dst = block;
450 
451  if (rle_blocks > 0) {
452  if (mode <= 4) {
454  } else if (mode == 10 && !cell->mv_ptr) {
456  }
457  rle_blocks--;
458  } else {
459  for (line = 0; line < 4;) {
460  num_lines = 1;
461  is_top_of_cell = is_first_row && !line;
462 
463  /* select primary VQ table for odd, secondary for even lines */
464  if (mode <= 4)
465  delta_tab = delta[line & 1];
466  else
467  delta_tab = delta[1];
469  code = bytestream_get_byte(data_ptr);
470  if (code < 248) {
471  if (code < delta_tab->num_dyads) {
473  dyad1 = bytestream_get_byte(data_ptr);
474  dyad2 = code;
475  if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
476  return IV3_BAD_DATA;
477  } else {
478  /* process QUADS */
479  code -= delta_tab->num_dyads;
480  dyad1 = code / delta_tab->quad_exp;
481  dyad2 = code % delta_tab->quad_exp;
482  if (swap_quads[line & 1])
483  FFSWAP(unsigned int, dyad1, dyad2);
484  }
485  if (mode <= 4) {
487  } else if (mode == 10 && !cell->mv_ptr) {
489  } else {
491  }
492  } else {
493  /* process RLE codes */
494  switch (code) {
495  case RLE_ESC_FC:
496  skip_flag = 0;
497  rle_blocks = 1;
498  code = 253;
499  /* FALLTHROUGH */
500  case RLE_ESC_FF:
501  case RLE_ESC_FE:
502  case RLE_ESC_FD:
503  num_lines = 257 - code - line;
504  if (num_lines <= 0)
505  return IV3_BAD_RLE;
506  if (mode <= 4) {
508  } else if (mode == 10 && !cell->mv_ptr) {
510  }
511  break;
512  case RLE_ESC_FB:
514  code = bytestream_get_byte(data_ptr);
515  rle_blocks = (code & 0x1F) - 1; /* set block counter */
516  if (code >= 64 || rle_blocks < 0)
517  return IV3_BAD_COUNTER;
518  skip_flag = code & 0x20;
519  num_lines = 4 - line; /* enforce next block processing */
520  if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
521  if (mode <= 4) {
523  } else if (mode == 10 && !cell->mv_ptr) {
525  }
526  }
527  break;
528  case RLE_ESC_F9:
529  skip_flag = 1;
530  rle_blocks = 1;
531  /* FALLTHROUGH */
532  case RLE_ESC_FA:
533  if (line)
534  return IV3_BAD_RLE;
535  num_lines = 4; /* enforce next block processing */
536  if (cell->mv_ptr) {
537  if (mode <= 4) {
539  } else if (mode == 10 && !cell->mv_ptr) {
541  }
542  }
543  break;
544  default:
545  return IV3_UNSUPPORTED;
546  }
547  }
548 
549  line += num_lines;
550  ref += row_offset * (num_lines << v_zoom);
551  dst += row_offset * (num_lines << v_zoom);
552  }
553  }
554 
555  /* move to next horizontal block */
556  block += 4 << h_zoom;
557  ref_block += 4 << h_zoom;
558  }
559 
560  /* move to next line of blocks */
561  ref_block += blk_row_offset;
562  block += blk_row_offset;
563  }
564  return IV3_NOERR;
565 }
566 
567 
568 /**
569  * Decode a vector-quantized cell.
570  * It consists of several routines, each of which handles one or more "modes"
571  * with which a cell can be encoded.
572  *
573  * @param ctx pointer to the decoder context
574  * @param avctx ptr to the AVCodecContext
575  * @param plane pointer to the plane descriptor
576  * @param cell pointer to the cell descriptor
577  * @param data_ptr pointer to the compressed data
578  * @param last_ptr pointer to the last byte to catch reads past end of buffer
579  * @return number of consumed bytes or negative number in case of error
580  */
582  Plane *plane, Cell *cell, const uint8_t *data_ptr,
583  const uint8_t *last_ptr)
584 {
585  int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
586  int zoom_fac;
587  int offset, error = 0, swap_quads[2];
588  uint8_t code, *block, *ref_block = 0;
589  const vqEntry *delta[2];
590  const uint8_t *data_start = data_ptr;
591 
592  /* get coding mode and VQ table index from the VQ descriptor byte */
593  code = *data_ptr++;
594  mode = code >> 4;
595  vq_index = code & 0xF;
596 
597  /* setup output and reference pointers */
598  offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
599  block = plane->pixels[ctx->buf_sel] + offset;
600 
601  if (!cell->mv_ptr) {
602  /* use previous line as reference for INTRA cells */
603  ref_block = block - plane->pitch;
604  } else if (mode >= 10) {
605  /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
606  /* so we don't need to do data copying for each RLE code later */
607  int ret = copy_cell(ctx, plane, cell);
608  if (ret < 0)
609  return ret;
610  } else {
611  /* set the pointer to the reference pixels for modes 0-4 INTER */
612  mv_y = cell->mv_ptr[0];
613  mv_x = cell->mv_ptr[1];
614 
615  /* -1 because there is an extra line on top for prediction */
616  if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
617  ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
618  ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
619  av_log(ctx->avctx, AV_LOG_ERROR,
620  "Motion vectors point out of the frame.\n");
621  return AVERROR_INVALIDDATA;
622  }
623 
624  offset += mv_y * plane->pitch + mv_x;
625  ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
626  }
627 
628  /* select VQ tables as follows: */
629  /* modes 0 and 3 use only the primary table for all lines in a block */
630  /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
631  if (mode == 1 || mode == 4) {
632  code = ctx->alt_quant[vq_index];
633  prim_indx = (code >> 4) + ctx->cb_offset;
634  second_indx = (code & 0xF) + ctx->cb_offset;
635  } else {
636  vq_index += ctx->cb_offset;
637  prim_indx = second_indx = vq_index;
638  }
639 
640  if (prim_indx >= 24 || second_indx >= 24) {
641  av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
642  prim_indx, second_indx);
643  return AVERROR_INVALIDDATA;
644  }
645 
646  delta[0] = &vq_tab[second_indx];
647  delta[1] = &vq_tab[prim_indx];
648  swap_quads[0] = second_indx >= 16;
649  swap_quads[1] = prim_indx >= 16;
650 
651  /* requantize the prediction if VQ index of this cell differs from VQ index */
652  /* of the predicted cell in order to avoid overflows. */
653  if (vq_index >= 8 && ref_block) {
654  for (x = 0; x < cell->width << 2; x++)
655  ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
656  }
657 
658  error = IV3_NOERR;
659 
660  switch (mode) {
661  case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
662  case 1:
663  case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
664  case 4:
665  if (mode >= 3 && cell->mv_ptr) {
666  av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
667  return AVERROR_INVALIDDATA;
668  }
669 
670  zoom_fac = mode >= 3;
671  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
672  0, zoom_fac, mode, delta, swap_quads,
673  &data_ptr, last_ptr);
674  break;
675  case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
676  case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
677  if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
678  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
679  1, 1, mode, delta, swap_quads,
680  &data_ptr, last_ptr);
681  } else { /* mode 10 and 11 INTER processing */
682  if (mode == 11 && !cell->mv_ptr) {
683  av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
684  return AVERROR_INVALIDDATA;
685  }
686 
687  zoom_fac = mode == 10;
688  error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
689  zoom_fac, 1, mode, delta, swap_quads,
690  &data_ptr, last_ptr);
691  }
692  break;
693  default:
694  av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
695  return AVERROR_INVALIDDATA;
696  }//switch mode
697 
698  switch (error) {
699  case IV3_BAD_RLE:
700  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
701  mode, data_ptr[-1]);
702  return AVERROR_INVALIDDATA;
703  case IV3_BAD_DATA:
704  av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
705  return AVERROR_INVALIDDATA;
706  case IV3_BAD_COUNTER:
707  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
708  return AVERROR_INVALIDDATA;
709  case IV3_UNSUPPORTED:
710  av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
711  return AVERROR_INVALIDDATA;
712  case IV3_OUT_OF_DATA:
713  av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
714  return AVERROR_INVALIDDATA;
715  }
716 
717  return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
718 }
719 
720 
721 /* Binary tree codes. */
722 enum {
723  H_SPLIT = 0,
724  V_SPLIT = 1,
726  INTER_DATA = 3
727 };
728 
729 
730 #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
731 
732 #define UPDATE_BITPOS(n) \
733  ctx->skip_bits += (n); \
734  ctx->need_resync = 1
735 
736 #define RESYNC_BITSTREAM \
737  if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
738  skip_bits_long(&ctx->gb, ctx->skip_bits); \
739  ctx->skip_bits = 0; \
740  ctx->need_resync = 0; \
741  }
742 
743 #define CHECK_CELL \
744  if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
745  curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
746  av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
747  curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
748  return AVERROR_INVALIDDATA; \
749  }
750 
751 
753  Plane *plane, int code, Cell *ref_cell,
754  const int depth, const int strip_width)
755 {
756  Cell curr_cell;
757  int bytes_used, ret;
758 
759  if (depth <= 0) {
760  av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
761  return AVERROR_INVALIDDATA; // unwind recursion
762  }
763 
764  curr_cell = *ref_cell; // clone parent cell
765  if (code == H_SPLIT) {
766  SPLIT_CELL(ref_cell->height, curr_cell.height);
767  ref_cell->ypos += curr_cell.height;
768  ref_cell->height -= curr_cell.height;
769  if (ref_cell->height <= 0 || curr_cell.height <= 0)
770  return AVERROR_INVALIDDATA;
771  } else if (code == V_SPLIT) {
772  if (curr_cell.width > strip_width) {
773  /* split strip */
774  curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
775  } else
776  SPLIT_CELL(ref_cell->width, curr_cell.width);
777  ref_cell->xpos += curr_cell.width;
778  ref_cell->width -= curr_cell.width;
779  if (ref_cell->width <= 0 || curr_cell.width <= 0)
780  return AVERROR_INVALIDDATA;
781  }
782 
783  while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
785  switch (code = get_bits(&ctx->gb, 2)) {
786  case H_SPLIT:
787  case V_SPLIT:
788  if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
789  return AVERROR_INVALIDDATA;
790  break;
791  case INTRA_NULL:
792  if (!curr_cell.tree) { /* MC tree INTRA code */
793  curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
794  curr_cell.tree = 1; /* enter the VQ tree */
795  } else { /* VQ tree NULL code */
797  code = get_bits(&ctx->gb, 2);
798  if (code >= 2) {
799  av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
800  return AVERROR_INVALIDDATA;
801  }
802  if (code == 1)
803  av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
804 
805  CHECK_CELL
806  if (!curr_cell.mv_ptr)
807  return AVERROR_INVALIDDATA;
808 
809  ret = copy_cell(ctx, plane, &curr_cell);
810  return ret;
811  }
812  break;
813  case INTER_DATA:
814  if (!curr_cell.tree) { /* MC tree INTER code */
815  unsigned mv_idx;
816  /* get motion vector index and setup the pointer to the mv set */
817  if (!ctx->need_resync)
818  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
819  if (ctx->next_cell_data >= ctx->last_byte) {
820  av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
821  return AVERROR_INVALIDDATA;
822  }
823  mv_idx = *(ctx->next_cell_data++);
824  if (mv_idx >= ctx->num_vectors) {
825  av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
826  return AVERROR_INVALIDDATA;
827  }
828  curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
829  curr_cell.tree = 1; /* enter the VQ tree */
830  UPDATE_BITPOS(8);
831  } else { /* VQ tree DATA code */
832  if (!ctx->need_resync)
833  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
834 
835  CHECK_CELL
836  bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
837  ctx->next_cell_data, ctx->last_byte);
838  if (bytes_used < 0)
839  return AVERROR_INVALIDDATA;
840 
841  UPDATE_BITPOS(bytes_used << 3);
842  ctx->next_cell_data += bytes_used;
843  return 0;
844  }
845  break;
846  }
847  }//while
848 
849  return AVERROR_INVALIDDATA;
850 }
851 
852 
854  Plane *plane, const uint8_t *data, int32_t data_size,
855  int32_t strip_width)
856 {
857  Cell curr_cell;
858  unsigned num_vectors;
859 
860  /* each plane data starts with mc_vector_count field, */
861  /* an optional array of motion vectors followed by the vq data */
862  num_vectors = bytestream_get_le32(&data); data_size -= 4;
863  if (num_vectors > 256) {
864  av_log(ctx->avctx, AV_LOG_ERROR,
865  "Read invalid number of motion vectors %d\n", num_vectors);
866  return AVERROR_INVALIDDATA;
867  }
868  if (num_vectors * 2 > data_size)
869  return AVERROR_INVALIDDATA;
870 
871  ctx->num_vectors = num_vectors;
872  ctx->mc_vectors = num_vectors ? data : 0;
873 
874  /* init the bitreader */
875  init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
876  ctx->skip_bits = 0;
877  ctx->need_resync = 0;
878 
879  ctx->last_byte = data + data_size;
880 
881  /* initialize the 1st cell and set its dimensions to whole plane */
882  curr_cell.xpos = curr_cell.ypos = 0;
883  curr_cell.width = plane->width >> 2;
884  curr_cell.height = plane->height >> 2;
885  curr_cell.tree = 0; // we are in the MC tree now
886  curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
887 
888  return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
889 }
890 
891 
892 #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
893 
895  const uint8_t *buf, int buf_size)
896 {
897  GetByteContext gb;
898  const uint8_t *bs_hdr;
899  uint32_t frame_num, word2, check_sum, data_size;
900  int y_offset, u_offset, v_offset;
901  uint32_t starts[3], ends[3];
902  uint16_t height, width;
903  int i, j;
904 
905  bytestream2_init(&gb, buf, buf_size);
906 
907  /* parse and check the OS header */
908  frame_num = bytestream2_get_le32(&gb);
909  word2 = bytestream2_get_le32(&gb);
910  check_sum = bytestream2_get_le32(&gb);
911  data_size = bytestream2_get_le32(&gb);
912 
913  if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
914  av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
915  return AVERROR_INVALIDDATA;
916  }
917 
918  /* parse the bitstream header */
919  bs_hdr = gb.buffer;
920 
921  if (bytestream2_get_le16(&gb) != 32) {
922  av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
923  return AVERROR_INVALIDDATA;
924  }
925 
926  ctx->frame_num = frame_num;
927  ctx->frame_flags = bytestream2_get_le16(&gb);
928  ctx->data_size = (bytestream2_get_le32(&gb) + 7) >> 3;
929  ctx->cb_offset = bytestream2_get_byte(&gb);
930 
931  if (ctx->data_size == 16)
932  return 4;
933  ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
934 
935  bytestream2_skip(&gb, 3); // skip reserved byte and checksum
936 
937  /* check frame dimensions */
938  height = bytestream2_get_le16(&gb);
939  width = bytestream2_get_le16(&gb);
940  if (av_image_check_size(width, height, 0, avctx))
941  return AVERROR_INVALIDDATA;
942 
943  if (width != ctx->width || height != ctx->height) {
944  int res;
945 
946  ff_dlog(avctx, "Frame dimensions changed!\n");
947 
948  if (width < 16 || width > 640 ||
949  height < 16 || height > 480 ||
950  width & 3 || height & 3) {
951  av_log(avctx, AV_LOG_ERROR,
952  "Invalid picture dimensions: %d x %d!\n", width, height);
953  return AVERROR_INVALIDDATA;
954  }
956  if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
957  return res;
958  if ((res = ff_set_dimensions(avctx, width, height)) < 0)
959  return res;
960  }
961 
962  y_offset = bytestream2_get_le32(&gb);
963  v_offset = bytestream2_get_le32(&gb);
964  u_offset = bytestream2_get_le32(&gb);
965  bytestream2_skip(&gb, 4);
966 
967  /* unfortunately there is no common order of planes in the buffer */
968  /* so we use that sorting algo for determining planes data sizes */
969  starts[0] = y_offset;
970  starts[1] = v_offset;
971  starts[2] = u_offset;
972 
973  for (j = 0; j < 3; j++) {
974  ends[j] = ctx->data_size;
975  for (i = 2; i >= 0; i--)
976  if (starts[i] < ends[j] && starts[i] > starts[j])
977  ends[j] = starts[i];
978  }
979 
980  ctx->y_data_size = ends[0] - starts[0];
981  ctx->v_data_size = ends[1] - starts[1];
982  ctx->u_data_size = ends[2] - starts[2];
983  if (FFMIN3(y_offset, v_offset, u_offset) < 0 ||
984  FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
985  FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
986  FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
987  av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
988  return AVERROR_INVALIDDATA;
989  }
990 
991  ctx->y_data_ptr = bs_hdr + y_offset;
992  ctx->v_data_ptr = bs_hdr + v_offset;
993  ctx->u_data_ptr = bs_hdr + u_offset;
994  ctx->alt_quant = gb.buffer;
995 
996  if (ctx->data_size == 16) {
997  av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
998  return 16;
999  }
1000 
1001  if (ctx->frame_flags & BS_8BIT_PEL) {
1002  avpriv_request_sample(avctx, "8-bit pixel format");
1003  return AVERROR_PATCHWELCOME;
1004  }
1005 
1006  if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
1007  avpriv_request_sample(avctx, "Halfpel motion vectors");
1008  return AVERROR_PATCHWELCOME;
1009  }
1010 
1011  return 0;
1012 }
1013 
1014 
1015 /**
1016  * Convert and output the current plane.
1017  * All pixel values will be upsampled by shifting right by one bit.
1018  *
1019  * @param[in] plane pointer to the descriptor of the plane being processed
1020  * @param[in] buf_sel indicates which frame buffer the input data stored in
1021  * @param[out] dst pointer to the buffer receiving converted pixels
1022  * @param[in] dst_pitch pitch for moving to the next y line
1023  * @param[in] dst_height output plane height
1024  */
1025 static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
1026  ptrdiff_t dst_pitch, int dst_height)
1027 {
1028  int x,y;
1029  const uint8_t *src = plane->pixels[buf_sel];
1030  ptrdiff_t pitch = plane->pitch;
1031 
1032  dst_height = FFMIN(dst_height, plane->height);
1033  for (y = 0; y < dst_height; y++) {
1034  /* convert four pixels at once using SWAR */
1035  for (x = 0; x < plane->width >> 2; x++) {
1036  AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
1037  src += 4;
1038  dst += 4;
1039  }
1040 
1041  for (x <<= 2; x < plane->width; x++)
1042  *dst++ = *src++ << 1;
1043 
1044  src += pitch - plane->width;
1045  dst += dst_pitch - plane->width;
1046  }
1047 }
1048 
1049 
1051 {
1052  Indeo3DecodeContext *ctx = avctx->priv_data;
1053 
1054  ctx->avctx = avctx;
1055  avctx->pix_fmt = AV_PIX_FMT_YUV410P;
1056 
1058 
1059  ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
1060 
1061  return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
1062 }
1063 
1064 
1065 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
1066  AVPacket *avpkt)
1067 {
1068  Indeo3DecodeContext *ctx = avctx->priv_data;
1069  const uint8_t *buf = avpkt->data;
1070  int buf_size = avpkt->size;
1071  AVFrame *frame = data;
1072  int res;
1073 
1074  res = decode_frame_headers(ctx, avctx, buf, buf_size);
1075  if (res < 0)
1076  return res;
1077 
1078  /* skip sync(null) frames */
1079  if (res) {
1080  // we have processed 16 bytes but no data was decoded
1081  *got_frame = 0;
1082  return buf_size;
1083  }
1084 
1085  /* skip droppable INTER frames if requested */
1086  if (ctx->frame_flags & BS_NONREF &&
1087  (avctx->skip_frame >= AVDISCARD_NONREF))
1088  return 0;
1089 
1090  /* skip INTER frames if requested */
1091  if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1092  return 0;
1093 
1094  /* use BS_BUFFER flag for buffer switching */
1095  ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1096 
1097  if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
1098  return res;
1099 
1100  /* decode luma plane */
1101  if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1102  return res;
1103 
1104  /* decode chroma planes */
1105  if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1106  return res;
1107 
1108  if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1109  return res;
1110 
1111  output_plane(&ctx->planes[0], ctx->buf_sel,
1112  frame->data[0], frame->linesize[0],
1113  avctx->height);
1114  output_plane(&ctx->planes[1], ctx->buf_sel,
1115  frame->data[1], frame->linesize[1],
1116  (avctx->height + 3) >> 2);
1117  output_plane(&ctx->planes[2], ctx->buf_sel,
1118  frame->data[2], frame->linesize[2],
1119  (avctx->height + 3) >> 2);
1120 
1121  *got_frame = 1;
1122 
1123  return buf_size;
1124 }
1125 
1126 
1128 {
1129  free_frame_buffers(avctx->priv_data);
1130 
1131  return 0;
1132 }
1133 
1135  .name = "indeo3",
1136  .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
1137  .type = AVMEDIA_TYPE_VIDEO,
1138  .id = AV_CODEC_ID_INDEO3,
1139  .priv_data_size = sizeof(Indeo3DecodeContext),
1140  .init = decode_init,
1141  .close = decode_close,
1142  .decode = decode_frame,
1143  .capabilities = AV_CODEC_CAP_DR1,
1144  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
1145 };
#define av_cold
Definition: attributes.h:88
uint8_t
int32_t
Libavcodec external API header.
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:137
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:168
#define FFMAX3(a, b, c)
Definition: common.h:104
#define FFSWAP(type, a, b)
Definition: common.h:108
#define FFMIN(a, b)
Definition: common.h:105
#define FFMIN3(a, b, c)
Definition: common.h:106
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1893
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
static AVFrame * frame
mode
Use these values in ebur128_init (or'ed).
Definition: ebur128.h:83
bitstream reader API header.
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:659
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
@ AV_CODEC_ID_INDEO3
Definition: codec_id.h:77
@ AVDISCARD_NONKEY
discard all frames except keyframes
Definition: avcodec.h:235
@ AVDISCARD_NONREF
discard all non reference
Definition: avcodec.h:232
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:317
static const int offsets[]
Definition: hevc_pel.c:34
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
Definition: hpeldsp.c:338
misc image utilities
#define SPLIT_CELL(size, new_size)
Definition: indeo3.c:730
#define BUFFER_PRECHECK
Definition: indeo3.c:339
@ RLE_ESC_FE
apply null delta to all lines up to the 3rd line
Definition: indeo3.c:50
@ RLE_ESC_F9
same as RLE_ESC_FA + do the same with next block
Definition: indeo3.c:45
@ RLE_ESC_FF
apply null delta to all lines up to the 2nd line
Definition: indeo3.c:51
@ RLE_ESC_FB
apply null delta to N blocks / skip N blocks
Definition: indeo3.c:47
@ RLE_ESC_FD
apply null delta to all remaining lines of this block
Definition: indeo3.c:49
@ RLE_ESC_FA
INTRA: skip block, INTER: copy data from reference.
Definition: indeo3.c:46
@ RLE_ESC_FC
same as RLE_ESC_FD + do the same with next block
Definition: indeo3.c:48
#define BS_BUFFER
indicates which of two frame buffers should be used
Definition: indeo3.c:61
#define RLE_BLOCK_COPY
Definition: indeo3.c:343
#define RLE_BLOCK_COPY_8
Definition: indeo3.c:347
#define BS_8BIT_PEL
8-bit pixel bitdepth indicator
Definition: indeo3.c:56
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, ptrdiff_t dst_pitch, int dst_height)
Convert and output the current plane.
Definition: indeo3.c:1025
#define BS_NONREF
nonref (discardable) frame indicator
Definition: indeo3.c:60
#define OS_HDR_ID
Definition: indeo3.c:892
static av_cold int decode_close(AVCodecContext *avctx)
Definition: indeo3.c:1127
static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane, int code, Cell *ref_cell, const int depth, const int strip_width)
Definition: indeo3.c:752
#define RESYNC_BITSTREAM
Definition: indeo3.c:736
#define CHECK_CELL
Definition: indeo3.c:743
@ IV3_NOERR
Definition: indeo3.c:330
@ IV3_BAD_DATA
Definition: indeo3.c:332
@ IV3_OUT_OF_DATA
Definition: indeo3.c:335
@ IV3_BAD_COUNTER
Definition: indeo3.c:333
@ IV3_UNSUPPORTED
Definition: indeo3.c:334
@ IV3_BAD_RLE
Definition: indeo3.c:331
AVCodec ff_indeo3_decoder
Definition: indeo3.c:1134
static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane, Cell *cell, const uint8_t *data_ptr, const uint8_t *last_ptr)
Decode a vector-quantized cell.
Definition: indeo3.c:581
static av_cold int decode_init(AVCodecContext *avctx)
Definition: indeo3.c:1050
#define BS_MV_Y_HALF
vertical mv halfpel resolution indicator
Definition: indeo3.c:58
static uint8_t requant_tab[8][128]
Definition: indeo3.c:112
#define APPLY_DELTA_1011_INTER
Definition: indeo3.c:403
@ V_SPLIT
Definition: indeo3.c:724
@ INTRA_NULL
Definition: indeo3.c:725
@ H_SPLIT
Definition: indeo3.c:723
@ INTER_DATA
Definition: indeo3.c:726
static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell, uint8_t *block, uint8_t *ref_block, ptrdiff_t row_offset, int h_zoom, int v_zoom, int mode, const vqEntry *delta[2], int swap_quads[2], const uint8_t **data_ptr, const uint8_t *last_ptr)
Definition: indeo3.c:425
#define RLE_LINES_COPY
Definition: indeo3.c:356
static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx, Plane *plane, const uint8_t *data, int32_t data_size, int32_t strip_width)
Definition: indeo3.c:853
static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
Definition: indeo3.c:151
#define UPDATE_BITPOS(n)
Definition: indeo3.c:732
static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx, AVCodecContext *avctx, int luma_width, int luma_height)
Definition: indeo3.c:165
#define RLE_LINES_COPY_M10
Definition: indeo3.c:359
#define BS_MV_X_HALF
horizontal mv halfpel resolution indicator
Definition: indeo3.c:59
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: indeo3.c:1065
static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into the cell(x,...
Definition: indeo3.c:231
static uint32_t replicate32(uint32_t a)
Definition: indeo3.c:307
#define APPLY_DELTA_8
Definition: indeo3.c:381
#define CELL_STACK_MAX
Definition: indeo3.c:72
static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx, const uint8_t *buf, int buf_size)
Definition: indeo3.c:894
static av_cold void build_requant_tab(void)
Definition: indeo3.c:119
static void fill_64(uint8_t *dst, const uint64_t pix, int32_t n, int32_t row_offset)
Definition: indeo3.c:320
#define BS_KEYFRAME
intra frame indicator
Definition: indeo3.c:57
#define APPLY_DELTA_4
Definition: indeo3.c:368
static uint64_t replicate64(uint64_t a)
Definition: indeo3.c:296
static const vqEntry vq_tab[24]
Definition: indeo3data.h:330
int i
Definition: input.c:407
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
#define AV_RN32A(p)
Definition: intreadwrite.h:526
#define AV_WN64A(p, v)
Definition: intreadwrite.h:542
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:49
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:84
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
uint8_t w
Definition: llviddspenc.c:39
#define FFALIGN(x, a)
Definition: macros.h:48
const char data[16]
Definition: mxf.c:142
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
const uint8_t * code
Definition: spdifenc.c:413
main external API structure.
Definition: avcodec.h:536
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:746
int width
picture width / height.
Definition: avcodec.h:709
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:616
void * priv_data
Definition: avcodec.h:563
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:2006
AVCodec.
Definition: codec.h:197
const char * name
Name of the codec implementation.
Definition: codec.h:204
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:349
This structure stores compressed data.
Definition: packet.h:346
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
Definition: indeo3.c:74
const int8_t * mv_ptr
ptr to the motion vector if any
Definition: indeo3.c:80
int16_t height
cell height in 4x4 blocks
Definition: indeo3.c:78
int16_t width
cell width in 4x4 blocks
Definition: indeo3.c:77
uint8_t tree
tree id: 0- MC tree, 1 - VQ tree
Definition: indeo3.c:79
int16_t xpos
cell coordinates in 4x4 blocks
Definition: indeo3.c:75
int16_t ypos
Definition: indeo3.c:76
const uint8_t * buffer
Definition: bytestream.h:34
Half-pel DSP context.
Definition: hpeldsp.h:45
Plane planes[3]
Definition: indeo3.c:108
uint16_t frame_flags
frame properties
Definition: indeo3.c:98
uint32_t frame_num
current frame number (zero-based)
Definition: indeo3.c:96
int16_t width
Definition: indeo3.c:95
GetBitContext gb
Definition: indeo3.c:87
AVCodecContext * avctx
Definition: indeo3.c:84
const uint8_t * u_data_ptr
Definition: indeo3.c:103
const uint8_t * y_data_ptr
Definition: indeo3.c:101
uint8_t cb_offset
needed for selecting VQ tables
Definition: indeo3.c:99
HpelDSPContext hdsp
Definition: indeo3.c:85
unsigned num_vectors
number of motion vectors in mc_vectors
Definition: indeo3.c:93
int32_t v_data_size
Definition: indeo3.c:105
const uint8_t * v_data_ptr
Definition: indeo3.c:102
int data_size
size of the frame data in bytes
Definition: indeo3.c:97
const uint8_t * next_cell_data
Definition: indeo3.c:90
uint8_t buf_sel
active frame buffer: 0 - primary, 1 -secondary
Definition: indeo3.c:100
const uint8_t * alt_quant
secondary VQ table set for the modes 1 and 4
Definition: indeo3.c:107
int32_t y_data_size
Definition: indeo3.c:104
const uint8_t * last_byte
Definition: indeo3.c:91
int32_t u_data_size
Definition: indeo3.c:106
const int8_t * mc_vectors
Definition: indeo3.c:92
int16_t height
Definition: indeo3.c:95
Definition: cfhd.h:120
uint8_t * pixels[2]
pointer to the actual pixel data of the buffers above
Definition: indeo3.c:66
int width
Definition: cfhd.h:121
uint32_t width
Definition: indeo3.c:67
uint8_t * buffers[2]
Definition: indeo3.c:65
int height
Definition: cfhd.h:122
ptrdiff_t pitch
Definition: indeo3.c:69
uint32_t height
Definition: indeo3.c:68
In the ELBG jargon, a cell is the set of points that are closest to a codebook entry.
Definition: elbg.c:39
Definition: graph2dot.c:48
uint8_t num_dyads
number of two-pixel deltas
Definition: indeo3data.h:326
uint8_t quad_exp
log2 of four-pixel deltas
Definition: indeo3data.h:327
#define ff_dlog(a,...)
#define avpriv_request_sample(...)
#define av_freep(p)
#define av_malloc(s)
#define av_log(a,...)
static void error(const char *err)
#define src
Definition: vp8dsp.c:255
static int16_t block[64]
Definition: dct.c:116
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
AVFormatContext * ctx
Definition: movenc.c:48
#define height
#define width
static const uint8_t offset[127][2]
Definition: vf_spp.c:107
float delta